首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Types and nature of fracture associated with Late Ordovician paleochannels of glaciofluvial Sarah Formation,Qasim region,Central Saudi Arabia
Authors:Jarrah Mohammed Ahmed Babiker  Mustafa Mohammed Hariri  Osman Abdullatif  Gabor Korvin
Institution:1.King Fahd University of Petroleum and Minerals,Dhahran,Saudi Arabia
Abstract:This study evaluates the Late Ordovician glaciofluvial deposits of the Sarah Formation and equivalent outcroppings in north, central, and southwestern Saudi Arabia. The Sarah Formation also covers a wide area in the subsurface and is considered as an important target for unconventional tight gas reservoir. Defining the fracture types, nature, and distribution in outcrop scale might help to establish a successful fracture simulation model and behavior for the Sarah tight gas reservoir in the subsurface. This study investigates fracture characteristics for the Sarah Formation at Sarah paleochannel outcrops. The study revealed three sets of fractures, which have EW, NS, and SE-NW directions, and these fractures vary from open, resistive, and filled to resistive fractures. The closed fractures are filled with ferruginated iron oxides and gypsum. The filled fractures (the thrust boundary) are found in the study area at the SE-NW strike fracture set, while open and resistive fractures are found mainly at S-N and E-W fracture sets, respectively. The syn-depositional filled fractures (iron oxides) are considered as the younger fracture sets while the open and resistive fractures are post-depositional fractures which may have resulted from uplift or tectonic movement. A general model representing the fracture pattern and the thrusting boundaries due to glacial movement was constructed. It has been noticed that the systematic occurrence of filled fractures (thrust boundaries) described the boundaries between different glacial events, which act as a fluid barrier (filled fractures) and decrease the reservoir quality. The finding of this study might be utilized as a guide and lead for exploration in the subsurface Sarah glacial deposits. It will also help to understand and speculate the nature pattern and distribution of fractures with the Sarah Formation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号