首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metamorphism and granite genesis in the Hidaka Metamorphic Belt, Hokkaido, Japan
Authors:Y OSANAI  M KOMATSU  M OWADA
Institution:Department of Earth Sciences and Astronomy, Fukuoka University of Education, Munakata, 811-41 Japan;Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, 790 Japan;Department of Geology and Mineralogy, Faculty of Science, Hokkaido University, Sapporo, 060 Japan
Abstract:The Main Zone of the Hidaka Metamorphic Belt is an uplifted crustal section of island-arc type. The crust was formed during early Tertiary time, as a result of collision between two arc–trench systems of Cretaceous age. The crustal metamorphic sequence is divided into four metamorphic zones (I–IV), in which zone IV is in the granulite facies. A detailed study of the evolution of the Hidaka Belt, based on a revised P–T–t analysis of the metamorphic rocks, notably a newly found staurolite-bearing granulite, confirms a prograde isobaric heating path, after a supposed event of tectonic thickening of accretionary sedimentary and oceanic crustal rocks. During the peak metamorphic event (c. 53 Ma), the regional geothermal gradient attained 33–40° C km?1, and the highest P–T condition obtained from the lowest part of the granulite unit is 830° C, 7 kbar. In this part, XH2O of Gt–Opx–Cd gneiss is about 0.15 and that of Gt–Cd–Bt gneiss is 0.4. The P–T–XH2O condition of the granulite unit is well within a field where fluid-present partial melting of pelitic and greywacke metamorphic rocks takes place. This is in harmony with the restitic nature of the Gt–Opx–Cd gneiss in the lowest part of the granulite unit. The possibility that partial melting took place in the Main Zone is significant for the genesis of the peraluminous (S-type) granitic rocks within it. The S-type granitic rocks in this zone are Opx–Gt–Bt tonalite in the granulite zone, Gt–Cd–Bt tonalite in the amphibolite zone, and Cd–Bt–Mus tonalite in the Bt–Mus gneiss zone. The mineralogical and chemical nature of these strongly peraluminous tonalitic rocks permit them to be regarded as having been derived from S-type granitic magma generated by crustal anatexis of pelitic metamorphic rocks in deeper crust.
Keywords:arc–arc collision  granulite facies  partial melting  pelite  peraluminous tonalite              P–T–t–D path
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号