首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry of meteoric calcite cements in some Pleistocene limestones
Authors:ARTHUR H SALLER  CLYDE H MOORE  JR
Institution:Department of Geology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
Abstract:In this study, the stable isotope and trace element geochemistries of meteoric cements in Pleistocene limestones from Enewetak Atoll (western Pacific Ocean), Cat Island (Bahamas), and Yucatan were characterized to help interpret similar cements in ancient rocks. Meteoric calcite cements have a narrow range of δ18O values and a broad range of δ13C values in each geographical province. These Pleistocene cements were precipitated from water with stable oxygen isotopic compositions similar to modern rainwater in each location. Enewetak calcite cements have a mean δ18O composition of ?6.5%0 (PDB) and δ13C values ranging from ?9.6 to +0.4%0 (PDB). Sparry calcite cements from Cat Island have a mean δ18O composition of ?4.1%0 and δ13C values ranging from ?6.3 to + 1.1%0. Sparry cements from Yucatan have a mean δ18O composition of ?5.7%0 and δ13C values of ?8.0 to ?2.7%0. The mean δ18O values of these Pleistocene meteoric calcite cements vary by 2.4%0 due to climatic variations not related directly to latitude. The δ13C compositions of meteoric cements are distinctly lower than those of the depositional sediments. Variations in δ13C are not simply a function of distance below an exposure surface. Meteoric phreatic cements often have δ13C compositions of less than —4.0%0, which suggests that soil-derived CO2 and organic material were washed into the water table penecontemporaneous with precipitation of phreatic cements. Concentrations of strontium and magnesium are quite variable within and between the three geographical provinces. Mean strontium concentrations for sparry calcite cements are, for Enewetak Atoll, 620 ppm (σ= 510 ppm); for Cat Island, 1200 ppm (σ= 980 ppm); and for Yucatan, 700 ppm (σ= 390 ppm). Equant cements, intraskeletal cements, and Bahamian cements have higher mean strontium concentrations than other cements. Equant and intraskeletal cements probably precipitated in more closed or stagnant aqueous environments. Bahamian depositional sediments had higher strontium concentrations which probably caused high strontium concentrations in their cements. Magnesium concentrations in Pleistocene meteoric cements are similar in samples from Enewetak Atoll (mean =1.00 mol% MgCO3; σ= 0.60 mol% MgCO3) and Cat Island (mean = 0.84 mol% MgCO3; σ= 0.52mol% MgCO3) but Yucatan samples have higher magnesium concentrations (mean = 2.20 mol% MgCO3: σ= 0.84mol% MgCO3). Higher magnesium concentrations in some Yucatan cements probably reflect precipitation in environments where sea water mixed with fresh water.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号