首页 | 本学科首页   官方微博 | 高级检索  
     

贵州局地大气加权平均温度模型的建立与精度分析
引用本文:李宏达,张显云,王晓红,邹广黔. 贵州局地大气加权平均温度模型的建立与精度分析[J]. 大地测量与地球动力学, 2020, 40(5): 496-501
作者姓名:李宏达  张显云  王晓红  邹广黔
作者单位:贵州大学矿业学院;贵州大学林学院;贵州省第一测绘院
基金项目:国家自然科学基金(41701464);贵州省科学技术基础研究计划(黔科合基础[2017]1054);贵州大学研究生重点课程建设项目(贵大研ZDKC[2015]029)。
摘    要:基于贵阳、威宁两个无线电探空站2014~2016年的气象数据,采用一元线性回归方法构建贵州整体、局地及季节大气加权平均温度Tm模型,并分析模型的精度。结果表明,贵州整体Tm模型精度高于Bevis模型、全国模型和亚热带季风气候模型;建立贵州局地、季节模型有助于进一步改善Tm的精度;相较于Bevis模型,局地Tm模型反演的PWV精度更高,与实际降水吻合更好。

关 键 词:大气加权平均温度  大气可降水量  线性回归  精度分析  

Model Establishment and Accuracy Analysis of Atmospheric Weighted Mean Temperature in Guizhou Region
LI Hongda,ZHANG Xianyun,WANG Xiaohong,ZOU Guangqian. Model Establishment and Accuracy Analysis of Atmospheric Weighted Mean Temperature in Guizhou Region[J]. Journal of Geodesy and Geodynamics, 2020, 40(5): 496-501
Authors:LI Hongda  ZHANG Xianyun  WANG Xiaohong  ZOU Guangqian
Affiliation:(College of Mining,Guizhou University,West-Jiaxiunan Road,Guiyang 550025,China;College of Forestry,Guizhou University,West-Jiaxiunan Road,Guiyang 550025,China;Guizhou Provincial First Insitute of Surveying and Mapping,1268 South-Huaxi Road,Guiyang 550025,China)
Abstract:Based on the meteorological data of the two radiosonde stations in Guiyang and Weining from 2014 to 2016, the overall, local and seasonal atmospheric weighted mean temperature models of Guizhou are constructed by the one-dimensional linear regression method. Model accuracy is analyzed. The results show that the accuracy of Guizhou model is higher than that of the Bevis, national, and subtropical monsoon climate models.Meanwhile, the establishment of Guizhou local and seasonal models contribute to further improve accuracy. Compared with the Bevis model, the local model inversion has higher PWV accuracy and is in better agreement with actual precipitation.
Keywords:atmospheric weighted mean temperature  precipitable water vapor  linear regression  accuracy analysis  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号