首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSR-WSVM模型的边坡位移预测
引用本文:李建新,刘小生,肖 钢,周 文,刘仁志. 基于PSR-WSVM模型的边坡位移预测[J]. 大地测量与地球动力学, 2020, 40(6): 577-580
作者姓名:李建新  刘小生  肖 钢  周 文  刘仁志
作者单位:江西理工大学建筑与测绘工程学院;河海大学地球科学与工程学院
基金项目:国家自然科学基金(41561091)。
摘    要:
为建立高精度的边坡位移预测模型,采用相空间重构(PSR)将边坡位移时间序列数据转换为多维数据,同时构造小波核函数改进的支持向量机模型,建立PSR-WSVM模型并应用于边坡位移预测。将PSR-WSVM模型预测结果与传统支持向量机(SVM)模型、小波支持向量机(WSVM)模型和基于相空间重构的支持向量机(PSR-SVM)模型预测结果进行对比,通过平均绝对误差(MAE)、平均绝对误差百分比(MAPE)和均方根误差(RMSE)3个精度评价指标验证PSR-WSVM模型的可行性。工程实例结果表明,PSR-WSVM模型预测结果的3个精度评价指标都优于另外3种模型,边坡位移预测的精度明显提升。

关 键 词:相空间重构  小波核函数  支持向量机  边坡位移预测

Slope Displacement Prediction Based on PSR-WSVM Model
LI Jianxin,LIU Xiaosheng,XIAO Gang,ZHOU Wen,LIU Renzhi. Slope Displacement Prediction Based on PSR-WSVM Model[J]. Journal of Geodesy and Geodynamics, 2020, 40(6): 577-580
Authors:LI Jianxin  LIU Xiaosheng  XIAO Gang  ZHOU Wen  LIU Renzhi
Affiliation:(School of Architecture and Surveying and Mapping Engineering,Jiangxi University of Science and Technology,86 Hongqi Road,Ganzhou 341000,China;School of Earth Sciences and Engineering,Hohai University,8 West-Focheng Road,Nanjing 211100,China)
Abstract:
In order to establish a high-precision slope displacement prediction model, we use phase space reconstruction(PSR) to transform the slope displacement time series data into multi-dimensional data. The wavelet kernel function is constructed to improve the support vector machine model and to establish the PSR-WSVM model. The model is applied to slope displacement prediction. The PSR-WSVM model prediction results are compared with the traditional support vector machine model(SVM), wavelet support vector machine model(WSVM) and phase space reconstruction-based support vector machine model(PSR-SVM) prediction results. The average absolute error is passed. Mean absolute error percentage(MAPE) and root mean square error(RMSE) accuracy evaluation indicators verify the feasibility of the PSR-WSVM model. The results of engineering examples show that the three precision evaluation indexes of PSR-WSVM model prediction result are better than the other three models, and the accuracy of slope displacement prediction has obvious improvement.
Keywords:phase space reconstruction  wavelet kernel function  support vector machine  slope displacement prediction  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号