首页 | 本学科首页   官方微博 | 高级检索  
     检索      

六分量弹性波场数值模拟与分析
引用本文:张智,孙丽霞,唐国彬,徐涛,王赟,王敏玲,郭希.六分量弹性波场数值模拟与分析[J].地球物理学报,2020,63(6):2375-2385.
作者姓名:张智  孙丽霞  唐国彬  徐涛  王赟  王敏玲  郭希
作者单位:1. 桂林理工大学地球科学学院, 桂林 541004;2. 广西隐伏金属矿产勘查重点实验室, 桂林 541004;3. 中国科学院地质与地球物理研究所, 北京 100029;4. 中国地质大学地球物理与信息技术学院, 北京 100083
基金项目:国家自然科学基金项目(41974048,41574078,41604039,41604102)和广西自然科学基金项目(2018GXNSFAA138059,2016GXNSFBA380215,2016GXNSFBA380082)联合资助.
摘    要:地震波传播过程中,质点的振动不仅包括三个独立的平移部分,还包括三个独立的旋转部分.本文基于一阶速度-应力弹性波方程,采用分裂完全匹配层(SPML)的吸收边界条件,推导了时间导数二阶精度和空间导数高阶精度的交错网格有限差分格式的弹性波速度与应力各分量计算公式,模拟了各向同性介质中均匀模型和层状模型下的六分量波场,并对二维各向同性层状模型下的三个分量地震记录做高分辨率线性拉东变换得到各自的频散能谱.数值模拟分析结果表明:(1)旋转分量的能量要比平动分量弱的多;(2)在平动分量上,面波能量强,频率低,反射P波能量较强,反射S波能量稍弱;在旋转分量上,反射P波能量很弱,S波能量强;(3)与平动分量相比,旋转分量的频散能谱效果更好,能看到基阶和完整的高阶面波,即旋转分量能反映更多的地下介质信息.

关 键 词:平动分量  转动分量  交错网格  数值模拟  
收稿时间:2019-11-05

Numerical simulation of the six-component elastic-wave field
ZHANG Zhi,SUN LiXia,TANG GuoBin,XU Tao,WANG Yun,WANG MinLing,GUO Xi.Numerical simulation of the six-component elastic-wave field[J].Chinese Journal of Geophysics,2020,63(6):2375-2385.
Authors:ZHANG Zhi  SUN LiXia  TANG GuoBin  XU Tao  WANG Yun  WANG MinLing  GUO Xi
Institution:1. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China;2. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin 541004, China;3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;4. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
Abstract:In the seismic wave propagation, the particle motion includes not only three independent translations, but also three independent rotations. In this paper, we simulate seismic wave propagation in the elastic medium, including body and surface waves, and analyze the wave characteristics of all the six components. Based on the theory of first-order velocity-stress elastic wave equation, we use the absorbing boundary condition of the Splitting Complete Matching Layer (SPML) in the simulation. The calculation formulas of the velocity and stress in the staggered grid finite difference scheme are derived to simulate the six-component wave field in the isotropic medium. And then the three-component dispersive-energy spectra in a two-dimensional isotropic two-layer model are obtained by a high-resolution linear Radon transform. The simulation results show that the energy of rotational components is much weaker than that of translational components. In the translational components, surface waves have stronger energy and lower frequency, while the P-wave energy is stronger and the S-wave energy is weaker. On the contrary, in the rotational components, the P-wave energy is weaker and the S-wave energy is stronger. The dispersion energy spectra of rotational components contain more information on fundamental and higher modes, namely rotational components carry more underground information.
Keywords:Translational component  Rotational component  Staggered grid finite difference scheme  Simulation  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号