首页 | 本学科首页   官方微博 | 高级检索  
     

龙马溪组页岩数字岩心LSM-RVM数值建模方法研究及TOC含量影响分析
引用本文:刘宁, 符力耘, 曹呈浩, 刘建林. 2020. 龙马溪组页岩数字岩心LSM-RVM数值建模方法研究及TOC含量影响分析. 地球物理学报, 63(7): 2774-2785, doi: 10.6038/cjg2020N0096
作者姓名:刘宁  符力耘  曹呈浩  刘建林
作者单位:1. 北京化工大学机电工程学院, 北京 100029; 2. 中国石油大学(华东)深层油气重点实验室, 青岛 266580; 3. 南京工业大学交通运输工程学院, 南京 210009
基金项目:国家自然科学基金(41804134)、中国科学院战略性先导科技专项(B类)(XDB10010401)、国家科技重大专项课题"页岩气勘探地球物理技术研究"(2017ZX05036-005),中央高校基本科研业务费专项(ZY2009),中国博士后科学基金面上项目(2018M640176)和中国科学院青年创新促进会基金(2019069)联合资助.
摘    要:页岩气储层中含有大量有机碳(TOC),其丰度与成熟度对页岩力学特性有重要影响.建立包含TOC的精细数值模型,将有助于探索页岩微结构与矿物组分含量对等效弹性模量的作用程度,是"甜点区"预测的重要理论基础.本文提出了一种离散数值建模方法,基于高精度成像技术,采用晶格弹簧-随机孔隙耦合模型(LSM-RVM)模拟包含多种矿物组分及不同成熟度干酪根的数字岩心,分析TOC成熟度及含量对弹性参数的影响.在该模型中,参数设置(数值阻尼与加载应变速率)至关重要,选取不当会对计算精度造成一定影响.研究结果表明,LSM-RVM能够生成符合TOC及多种矿物实际分布特征的数值模型,是一种精细数值建模方法.

关 键 词:龙马溪组页岩   TOC含量   数字岩心   晶格弹簧模型(LSM)   随机孔隙模型(RVM)   弹性模量
收稿时间:2019-06-09
修稿时间:2019-09-25

Research on numerical modeling method of LSM-RVM and TOC content influence for digital core from Longmaxi Formation shale
LIU Ning, FU LiYun, CAO ChengHao, LIU JianLin. 2020. Research on numerical modeling method of LSM-RVM and TOC content influence for digital core from Longmaxi Formation shale. Chinese Journal of Geophysics (in Chinese), 63(7): 2774-2785, doi: 10.6038/cjg2020N0096
Authors:LIU Ning  FU LiYun  CAO ChengHao  LIU JianLin
Affiliation:1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2. Key Laboratory of Deep Oil and Gas, China University of Petroleum(East China), Qingdao 266580, China; 3. School of Transportation Engineering, Nanjing Tech University, Nanjing 210009, China
Abstract:Shale gas reservoirs contain a large amount of organic carbon (TOC), and its abundance and maturity have significant effects on the mechanical properties. An accurate numerical model regarding TOC helps to analyze the effects of shale microstructure and mineral composition contents on the effective elastic moduli. It serves as an important theoretical basis for the prediction of "sweet spot". In this paper, a numerical modeling method based on discrete concepts is proposed. The lattice spring model and random void model are combined to simulate the digital cores from X-ray micro-CT imaging. This LSM-RVM coupling model takes various mineral components and different maturity kerogens into consideration. Then, the effect of maturity and content of TOC on the effective elasticity is analyzed. Here, model parameters (e.g., numerical damping and loading strain rate) settings are critical. An improper selection might lead to low accuracy. As a result, the LSM-RVM model could capture the real distribution characteristics of TOC and various minerals, which confirms it is an accurate numerical elastic modeling scheme.
Keywords:Longmaxi Formation shale  TOC content  Digital core  Lattice Spring Model (LSM)  Random Void Model (RVM)  Elastic moduli  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号