首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Morphology and Dynamics of Alluvial Fan and Its Research Prospects
Authors:Dengyun Wu  Zhikun Ren  Lü Honghua  Jinrui Liu  Guanghao Ha  Chi Zhang  Menghao Zhu
Institution:1.Key Laboratory of Active Tectonics and Volcanos, Institute of Geology, China Earthquake Administration, Beijing 100029, China;2.School of Geographic Sciences, East China Normal University, Shanghai 200241, China
Abstract:Alluvial fans can preserve historical records of sediment transport to middle and lower river systems or piedmont basins, which are considered to be sensitive recorders of climate change and tectonic activity. In this paper, the morphological characteristics, control factors and future development trend of alluvial fan are summarized and described. The main understanding is as follows: According to the gravity flow and traction flow process, fan can be divided into debris flow alluvial fan and fluvial fan. The former is formed under the action of debris gravity flow deposits, which is related to the occasional flood and burst flow in a short time. The latter is braided tributaries depositions which are gradually shallower and spread radially in the direction of fan toe under the traction water transport. The erodibility of underlying bedrock can affect the scale of downstream alluvial fan, which depends on the sediment production and store factors in the catchment. The easily eroded bedrock may produce more sediment, making the alluvial fan area larger. In the contrast, the erodibility of rocks in the source area can also affect the slope and hydrological characteristics of the valley so that more sediment is deposited in the upstream basin and the alluvial fan formed in the downstream is smaller. Tectonic activity is the pre-condition for the development of alluvial fans, which provides a space for alluvial fans depositions. Faulting in the piedmont can change the position and morphology of the ancient alluvial fan, and also cause deformation or distortion of the thick sedimentary sequence to record the regional tectonic activity. The quaternary alluvial fan sequence corresponds well to the climate change during the glacial-interglacial period. However, the influence of the flood events caused by extreme meteorological events on alluvial fan deposition should be focused on. The application of a series of new techniques and methods will help to carry out deep research on alluvial fan in the future, such as high-resolution observation technique, physical simulation experiment, and precise dating.
Keywords:Alluvial fan  Fluvial fan  Bedrock lithology  Tectonic activity  Climate change  
点击此处可从《地球科学进展》浏览原始摘要信息
点击此处可从《地球科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号