摘 要: | 
在三维频率域电磁法的正演模拟方法中,有限元方法具有计算精度高、适应性强的优点,近年来来得到了越来越多的关注.在正演过程中,主要的计算量集中在求解由偏微分方程组离散得到的线性方程组上,因此求解线性方程组关系着正演计算速度以及模拟精度.由于由有限元方法离散得到的复系数线性方程组条件数非常大,使用常规的迭代法和预条件很难收敛.目前大多数的研究工作采用直接解法,需要大量的计算机内存,限制了可求解问题的规模. 本文研究了线性方程组的迭代解法,通过将复系数线性方程组转化为其实对称形式,构造分块对角预条件.在应用预条件的过程中,需要求解两个较小的实数方程,通过辅助空间解法求解.本文的算法适用于可控源电磁法和大地电磁法,对一系列的数值算例的模拟结果证明了迭代算法的效率,结果表明迭代算法可以在小于20次迭代内收敛,同时迭代次数与模型电阻率、问题规模和频率无关.

|