首页 | 本学科首页   官方微博 | 高级检索  
     

基于卫星辐射率资料的两种三维云反演方法对比研究
引用本文:许冬梅,沈菲菲,闵锦忠,张备. 基于卫星辐射率资料的两种三维云反演方法对比研究[J]. 大气科学, 2018, 42(2): 411-420. DOI: 10.3878/j.issn.1006-9895.1709.17157
作者姓名:许冬梅  沈菲菲  闵锦忠  张备
作者单位:1.南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044
基金项目:江苏省气象局北极阁基金项目BJG201604、BJG201510,江苏省自然科学基金项目BK20160954、BK20170940),国家重点研发计划项目2017YFC1502102、2017YFC1502103,国家自然科学基金项目41375025,南京信息工程大学人才启动基金项目2016r27、2016r043
摘    要:基于格点统计插值分析系统(Gridpoint Statistical Interpolation analysis system,简称GSI),利用粒子滤波(Particle Filter,简称PF)方法对卫星红外辐射率资料进行了云覆盖、云高等三维云图产品的反演研究。选取了具有高时空分辨率的静止卫星GOES(Geostationary Operational Environmental Satellites)-Imager辐射率资料进行了云反演试验,初步评估了PF云反演方法的可行性及其与多元极小残差(Multivariate and Minimum Residual,简称MMR)云反演方法的异同。结果表明:两种方法反演得到的云覆盖和云顶气压与NASA基于CO2切片法反演得到的GOES云产品一致性较高。PF和MMR方法反演产品的优点是云图信息是三维分布的,相对于NASA提供的GOES云产品能提供更全方位立体的云信息。MMR方法需要利用一维变分逐步拟合观测来反演三维云图产品;PF方法采用不同模式垂直层的云覆盖比例作为不同粒子来近似后验概率分布,计算效率大大提高。进一步提出了一种新的基于“扰动粒子”的粒子滤波云反演方法,结果表明:在滤波过程中采用足够多的粒子样本(样本数量约为250)可以改进后验概率密度函数的估计,有效地避免了粒子发散问题,改善了云反演的结果。

关 键 词:地球静止卫星成像仪(GOES-Imager)   格点统计插值分析系统(GSI)   云反演方法   粒子滤波法
收稿时间:2017-04-21

Comparison of Two Cloud Detection Schemes for High-Spectral Infrared Radiance Observations
XU Dongmei,SHEN Feifei,MIN Jinzhong and ZHANG Bei. Comparison of Two Cloud Detection Schemes for High-Spectral Infrared Radiance Observations[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(2): 411-420. DOI: 10.3878/j.issn.1006-9895.1709.17157
Authors:XU Dongmei  SHEN Feifei  MIN Jinzhong  ZHANG Bei
Affiliation:1.Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 2100442.Jiangsu Research Institute of Meteorological Science, Nanjing 210009
Abstract:The Particle Filter (PF) cloud retrieval method developed in the framework of GSI (Gridpoint Statistical Interpolation analysis system) is able to directly utilize the Infrared radiances to retrieve cloud masks and cloud profiles. Cloud retrieval experiments with GOES (Geostationary Operational Environmental Satellites)-Imager radiance are conducted with the PF and the Multivariate and Minimum Residual (MMR) methods respectively for comparison. The retrieved cloud properties from both methods show a good agreement with the cloud products from GOES. MMR retrieves cloud fractions on each individual model vertical levels by minimizing a cost function, while PF is an effective algorithm to treat those cloud fractions as different particles to gain recursive estimations of cloud distributions. To improve the PF method in terms of cloud retrieval application, this study perturbs the particles to better estimate cloud distributions. The advanced PF (with roughly 250 samples) is appropriate to ameliorate the problem of filter divergence caused by limited particles with better cloud retrievals efficiently.
Keywords:Geostationary Operational Environmental Satellites (GOES)-Imager  Gridpoint Statistical Interpolation system (GSI)  Cloud retrieval methods  Particle filter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号