GNSS广播星历轨道和钟差精度分析 |
| |
引用本文: | 刘路,郭金运,周茂盛,鄢建国,纪兵,赵春梅. GNSS广播星历轨道和钟差精度分析[J]. 武汉大学学报(信息科学版), 2022, 47(7): 1122-1132. DOI: 10.13203/j.whugis20200166 |
| |
作者姓名: | 刘路 郭金运 周茂盛 鄢建国 纪兵 赵春梅 |
| |
作者单位: | 1.武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079 |
| |
基金项目: | 国家自然科学基金41774001国家自然科学基金41774021国家自然科学基金41874091国家测绘自主可控专项816-517 |
| |
摘 要: | 为了对多个全球导航卫星系统(global navigation satellite system,GNSS)当前的广播星历精度进行一个全面的分析,对比了2014—2018年共5 a的GNSS广播星历与精密星历,并对全球定位系统(global positioning system,GPS)、格洛纳斯卫星导航系统(global navigation satellite system,GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system,Galileo)、北斗卫星导航系统(BeiDou navigation satellite system,BDS)、准天顶卫星系统(quasi-zenith satellite system,QZSS)等5个系统的广播星历长期精度变化进行了分析。结果表明:5 a中GPS的广播星历轨道及钟差精度最稳定;GLONASS的广播星历轨道精度稳定性较好,但其钟差精度存在较大的离散度;Galileo得益于具备全面运行能力(full operational capability, FOC)卫星的大量发射及运行,其广播...
|
关 键 词: | 全球导航卫星系统 广播星历 精密星历 轨道误差 钟差误差 |
收稿时间: | 2020-12-01 |
Accuracy Analysis of GNSS Broadcast Ephemeris Orbit and Clock Offset |
| |
Affiliation: | 1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China2.College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China3.Department of Navigation Engineering, Naval University of Engineering, Wuhan 430033, China4.Beijing Fangshan Human Satellite Laser National Field Scientific Observation and Research Station, Beijing 100830, China |
| |
Abstract: | Objectives At present, the accuracy analysis of global navigation satellite system(GNSS) broadcast ephemeris mostly focuses on the accuracy analysis of single system or short time, there is left relatively certain limiations. Methods We present a comprehensive comparison and analysis of the current broadcast ephemeris accuracy for multiple global navigation satellite systems (GNSS). The analysis is performed by comparing GNSS broadcast ephemeris with corresponding precise ephemeris. The long-term accuracy change of the broadcast ephemeris of various systems is analyzed using the GNSS broadcast ephemeris with the corresponding precise ephemeris from 2014 to 2018. Results The experimental results show that the orbit and clock offset accuracy of the broadcast ephemeris from the global positioning system (GPS) is the most stable during five years. The broadcast ephemeris of global navigation satellite system (GLONASS) has better orbit accuracy stability, but its clock offset accuracy has a large dispersion. The Galileo satellite navigation system (Galileo) has benefited from the large number of launches and operations of satellites with full operational capability. The orbit and clock offset accuracy of its broadcast ephemeris have greatly improved. In particular, the accuracy of orbit in tangential and normal directions and clock offset accuracy has surpassed that of GPS. The orbit accuracy of the broadcast ephemeris of the BeiDou navigation satellite system (BDS) has a large dispersion, and its accuracy of the clock offset shows instability. The stability of orbit and the clock offset accuracy of the broadcast ephemeris from the quasi-zenith satellite system (QZSS) is the worst. The current accuracy of the broadcast ephemeris for five systems is compared and analyzed using the one-year (2018) GNSS broadcast ephemeris and the corresponding precise ephemeris.The signal-in-space ranging errors(SISRE) considering the contribution of satellite orbital error and clock offset error for GPS, GLONASS, Galileo, BDS, and QZSS are 0.806 m, 2.704 m, 0.320 m, 1.457 m, and 1.645 m, respectively. The SISRE considering only the contribution of orbital error for GPS, GLONASS, Galileo, BDS, and QZSS are 0.167 m, 0.541 m, 0.229 m, 0.804 m, and 0.675 m, respectively. Conclusions These indicate that the broadcast ephemeris of the Galileo has the highest overall accuracy, followed by GPS, BDS, QZSS and GLONASS. The GPS broadcast ephemeris has the highest orbit accuracy, followed by Galileo, GLONASS, QZSS and BDS. Moreover, we found that the clock offset accuracy of the new kind of satellite is generally better than that of old kind of satellite in GPS satellite broadcast ephemeris. |
| |
Keywords: | |
|
| 点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息 |
|
点击此处可从《武汉大学学报(信息科学版)》下载免费的PDF全文 |
|