首页 | 本学科首页   官方微博 | 高级检索  
     

利用ICA方法提取奥卡万戈三角洲水储量变化信号
引用本文:王海波,游为,范东明,熊宇昊,李杰,黄强. 利用ICA方法提取奥卡万戈三角洲水储量变化信号[J]. 武汉大学学报(信息科学版), 2022, 47(1): 93-103. DOI: 10.13203/j.whugis20190278
作者姓名:王海波  游为  范东明  熊宇昊  李杰  黄强
作者单位:1.西南交通大学地球科学与环境工程学院,四川 成都,611756
基金项目:国家自然科学基金41974013国家自然科学基金41574018国家自然科学基金41604068国家自然科学基金41404018
摘    要:利用重力恢复与气候实验(gravity recovery and climate experiment, GRACE)时变地球重力场模型计算得到非洲奥卡万戈三角洲地区2003-01—2014-12的陆地水储量变化信息,分别采用主成分分析(principal component analysis, PCA)和独立成分分析(independent component analysis, ICA)提取质量变化信号,并与全球陆地数据同化系统(global land data assimilation system, GLDAS)的水文模型进行对比。结果显示,在奥卡万戈河流域东北部,水储量表现出很强的周期性变化,两种数据空间特征分布的信号出现在相同位置的成分GRACE-IC1和GLDAS-IC1对应的时间序列的相关系数达到0.85。奥卡万戈三角洲地区水储量从2003-01—2011-10呈现上升趋势,两种数据空间特征分布的信号出现在相同位置的成分GRACE-IC2和GLDAS-IC3对应的时间序列的相关系数达到0.81,说明GRACE反演结果与GLDAS水文模型反演结果在研究区域内具有很强的一致...

关 键 词:重力恢复与气候实验  奥卡万戈三角洲  主成分分析  独立成分分析  水储量变化
收稿时间:2020-04-21

Using ICA to Extract the Water Storage Variations Signals of the Okavango Delta
Affiliation:1.Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China2.China Railway Siyuan Survey and Design Group Co., Ltd, Wuhan 430063, China3.College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
Abstract:  Objectives  Studying regional land water storage changes can better understand the characteristics of water storage changes in an area, and provide better help for the study of extreme natural disasters such as drought and flood.  Methods  To verify the signal decomposition ability of independent component analysis(ICA), the water storage variations in Africa's Okavango delta region from January 2003 to December 2014 was calculated using gravity recovery and climate experiment (GRACE) time-varying earth gravity field model, and the mass change was extracted by principal component analysis and ICA respectively, which was compared with the Global Land Data Assimilation System (GLDAS) hydrological model.  Results  The results show periodic changes of the water reserves in the northeast of Okavango river, and the correlation coefficient of the time series corresponding to GRACE-IC1 and GLDAS-IC1 between the two datasets of spatial feature distribution in the same position reaches 0.85. The water variations in the Okavango delta area increase from January 2003 to October 2011, the correlation coefficient of the time series corresponding to GRACE-IC2 and GLDAS-IC3 between the two datasets of spatial feature distribution in the same position reaches 0.81. It indicates that GRACE agrees with the GLDAS hydrological model very well in the research area. In addition, Global Precipitation Climatology Center precipitation data and WaterGAP Global Hydrology Model data were introduced to analyze the variation of terrestrial water reserves in the study area.  Conclusions  Compared to the traditional polynomial fitting method, the ICA can directly extract the spatial-temporal characteristics of the quality change in a specific location in a large area. By comparing the third component of the analysis results of the two GRACE methods, it can be seen that the ICA has stronger decomposition ability than the principal component analysis.
Keywords:
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号