摘 要: | 针对无人机(unmanned aerial vehicle,UAV)影像提取的同名点数量较少,从而影响影像间位姿信息的计算,导致影像拼接错位、平差解算不严密甚至失败等问题,提出了一种联合对数极坐标描述与位置尺度特征的匹配算法。首先,建立高斯多尺度影像集合进行特征点提取;其次,采用对数极坐标进行描述子构建,建立适合UAV影像特征的描述子;然后,通过位置和尺度约束的距离匹配函数进行特征匹配;最后,通过模式搜索和快速样本共识方法剔除粗差后完成同名点提取。将四旋翼UAV获取的影像作为实验数据,与SIFT(scale invariant feature transform)算法和SAR-SIFT(synthetic aperture radar-SIFT)算法进行了影像匹配的对比实验。结果表明,所提算法可以较好地提取UAV影像的同名点对。
|