首页 | 本学科首页   官方微博 | 高级检索  
     

结合邻域SAC-NED测度的高光谱图像分类方法
引用本文:张斌,朱述龙,孟伟灿,曹彬才,宋新阳. 结合邻域SAC-NED测度的高光谱图像分类方法[J]. 测绘科学技术学报, 2015, 0(6): 600-604. DOI: 10.3969/j.issn.1673-6338.2015.06.011
作者姓名:张斌  朱述龙  孟伟灿  曹彬才  宋新阳
作者单位:1. 信息工程大学,河南 郑州 45001; 96633部队,北京 100096;2. 信息工程大学,河南 郑州 45001;3. 361243部队,新疆 乌鲁木齐,830002
摘    要:提出了一种光谱相似性测度用于高光谱图像分类方法。通过将光谱向量进行归一化处理,将计算得到的欧氏距离与光谱角余弦的值域归化到相同区间,得到光谱角余弦与欧氏距离联合测度值(SAC-NED)。在对图像像元进行分类时,以距离加权的方式将邻域像元参与中心像元SAC-NED值的计算,将像元分到SAC-NED值最大的类别。通过与其他5种常用相似性测度方法的实验结果对比表明:该算法能够提升高光谱图像分类的准确性和稳定性。

关 键 词:邻域信息  欧氏距离  光谱角余弦  高光谱图像  图像分类

A Hyperspectral Imagery Classification Method Using SAC-NED Measure with Neighborhood Information
Abstract:A spectral similarity measure SAC-NED was proposed in hyperspectral imagery classification by integra-ting the normalized Euclidean distance( NED) and the spectral angle cosine ( SAC) into the same range with the normalized spectral vector. By using neighborhood’ s SAC-NED value with its weight, the pixel is classified to its corresponding class with the maximum SAC-NED value. The performance of the proposed measure was compared with five traditional spectral similarity measure approaches. The result showed that the improved algorithm for im-agery classification had better accuracy and stability.
Keywords:neighborhood information  Euclidean distance  spectral angle cosine  hyperspectra limage  imagery classification
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号