结合邻域SAC-NED测度的高光谱图像分类方法 |
| |
引用本文: | 张斌,朱述龙,孟伟灿,曹彬才,宋新阳. 结合邻域SAC-NED测度的高光谱图像分类方法[J]. 测绘科学技术学报, 2015, 0(6): 600-604. DOI: 10.3969/j.issn.1673-6338.2015.06.011 |
| |
作者姓名: | 张斌 朱述龙 孟伟灿 曹彬才 宋新阳 |
| |
作者单位: | 1. 信息工程大学,河南 郑州 45001; 96633部队,北京 100096;2. 信息工程大学,河南 郑州 45001;3. 361243部队,新疆 乌鲁木齐,830002 |
| |
摘 要: | 提出了一种光谱相似性测度用于高光谱图像分类方法。通过将光谱向量进行归一化处理,将计算得到的欧氏距离与光谱角余弦的值域归化到相同区间,得到光谱角余弦与欧氏距离联合测度值(SAC-NED)。在对图像像元进行分类时,以距离加权的方式将邻域像元参与中心像元SAC-NED值的计算,将像元分到SAC-NED值最大的类别。通过与其他5种常用相似性测度方法的实验结果对比表明:该算法能够提升高光谱图像分类的准确性和稳定性。
|
关 键 词: | 邻域信息 欧氏距离 光谱角余弦 高光谱图像 图像分类 |
A Hyperspectral Imagery Classification Method Using SAC-NED Measure with Neighborhood Information |
| |
Abstract: | A spectral similarity measure SAC-NED was proposed in hyperspectral imagery classification by integra-ting the normalized Euclidean distance( NED) and the spectral angle cosine ( SAC) into the same range with the normalized spectral vector. By using neighborhood’ s SAC-NED value with its weight, the pixel is classified to its corresponding class with the maximum SAC-NED value. The performance of the proposed measure was compared with five traditional spectral similarity measure approaches. The result showed that the improved algorithm for im-agery classification had better accuracy and stability. |
| |
Keywords: | neighborhood information Euclidean distance spectral angle cosine hyperspectra limage imagery classification |
本文献已被 CNKI 万方数据 等数据库收录! |