首页 | 本学科首页   官方微博 | 高级检索  
     

基于MBR组合优化算法的多尺度面实体匹配方法
引用本文:刘凌佳,朱道也,朱欣焰,丁小辉,呙维. 基于MBR组合优化算法的多尺度面实体匹配方法[J]. 测绘学报, 2018, 47(5): 652-662. DOI: 10.11947/j.AGCS.2018.20160625
作者姓名:刘凌佳  朱道也  朱欣焰  丁小辉  呙维
作者单位:1. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;2. 武汉大学地球空间信息技术协同创新中心, 湖北 武汉 430079;3. 武汉大学空天信息安全与可信计算教育部重点实验室, 湖北 武汉 430072;4. 中国科学院东北地理与农业生态研究所, 吉林 长春 130102
基金项目:The National Key Research and Development Program of China(2016YFB0502204),The LIESMARS Special Research Funding,The Open Fund of State Laboratory of Information Engineering in Surveying;Mapping and Remote Sensing(2016Key Project),The Aerospace Science and Technology Innovation Foundation of China,国家重点研发计划(2016YFB0502204),测绘遥感信息工程国家重点实验室专项科研项目,测绘遥感信息工程国家重点实验室重点开放基金,航天科技联合基金
摘    要:
针对多尺度匹配中同名实体位置偏差较大,无法直接通过面积重叠法获得候选匹配的问题,本文提出了一种基于最小外包矩形(MBR)组合优化算法的多尺度面实体匹配方法。本文方法的基本思想是通过MBR组合优化和简要的形状特征来筛选1∶1、1∶NMN候选匹配,然后构建多因子人工神经网络模型来评估候选匹配。试验选取浙江省舟山市1∶2000岛礁基础数据和1∶10 000陆地基础数据中的居民地与设施面进行匹配算法的验证。结果表明,本文方法相对于基于面积重叠-神经网络的匹配方法表现出显著的优势,对存在位置偏移的匹配数据准确率和召回率分别达到了达到96.5%,达到89.0%,且能够识别所有匹配类型。

关 键 词:多尺度  面匹配  组合算法  空间域  人工神经网络  
收稿时间:2016-12-07
修稿时间:2017-11-09

A Multi-scale Polygonal Object Matching Method Based on MBR Combinatorial Optimization Algorithm
LIU Lingjia,ZHU Daoye,ZHU Xinyan,DING Xiaohui,GUO Wei. A Multi-scale Polygonal Object Matching Method Based on MBR Combinatorial Optimization Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 652-662. DOI: 10.11947/j.AGCS.2018.20160625
Authors:LIU Lingjia  ZHU Daoye  ZHU Xinyan  DING Xiaohui  GUO Wei
Affiliation:1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;2. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China;3. Key Laboratory of Aerospace Information Security and Trusted Computing of Ministry of Education, Wuhan University, Wuhan 430072, China;4. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
Abstract:
Aiming to solving the problem of positional discrepancy of corresponding objects in multi-scale polygonal object matching and that the potential matching pairs can't be directly identified by the method of areal overlapping,it is proposed that a multi-scale polygonal object matching method based on minimum bounding rectangle combinatorial optimization algorithm .The basic idea of our method is that:①identifying the potential matching pairs of 1:1,1:N andM:N with combinatorial algorithm and simple shape characteristic;②establishing multi-characteristic artificial neural network model to evaluate these potential matching pairs.The proposed method is demonstrated in the experiment of matching between 1:2000 and 1:10000 polygonal objects of residential buildings and industrial facilities in Zhoushan, Zhejiang Province.The experimental results showed that the proposed matching method show superior performance against a method of area overlapping and artificial neural network.Its precision and recall are 96.5% and 89.0% under the positional discrepancy scenario,and it successfully match 1:0,1:1,1:N andM:N matching pair.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号