首页 | 本学科首页   官方微博 | 高级检索  
     

基于偏最小二乘回归的纹理特征线性组合
引用本文:金淑英, 李德仁, 龚健雅. 基于偏最小二乘回归的纹理特征线性组合[J]. 武汉大学学报 ( 信息科学版), 2006, 31(5): 399-402.
作者姓名:金淑英  李德仁  龚健雅
作者单位:1 武汉大学测绘遥感信息工程国家重点实验室,武汉市珞喻路129号,430079
摘    要:
基于偏最小二乘回归技术对纹理特征进行线性组合,得到新的纹理特征来进行分类。实验表明,组合后的纹理特征不但提高了纹理分类的性能,而且具有一定的数据自适应能力。

关 键 词:特征组合  特征选择  共生矩阵  纹理谱  偏最小二乘回归
文章编号:1671-8860(2006)05-0399-04
收稿时间:2006-02-18
修稿时间:2006-02-18

Linear Combination of Texture Features Based on Partial Least Square Regression
JIN Shuying, LI Deren, GONG Jianya. Linear Combination of Texture Features Based on Partial Least Square Regression[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 399-402.
Authors:JIN Shuying  LI Deren  GONG Jianya
Affiliation:1 State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,129 Luoyu Road,Wuhan 430079,China
Abstract:
The paper presents partial least squares(PLS) method.Firstly,texture features(spectrum(TS) and gray-level co-occurrence matrix(GLCM)) are calculated from local image regions.Secondly,the authors apply PLS regression to preparatory texture features to extract linear combined new texture features.Thirdly,both the linear combined texture features and the preparatory texture features,together with the ordinary texture features,are imported into linear discrimination analysis(LDA) and quadratic discrimination analysis(QDA).Finally,classification results are compared and conclusions are drawn.The experiments show that not only PLS can reduce the dimension of texture features but also the combined texture features efficiently have better discrimination abilities than the ordinary texture features.
Keywords:feature combination  feature selection  GLCM  texture spectrum  partial least square regression
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号