首页 | 本学科首页   官方微博 | 高级检索  
     

基于逻辑回归模型的化探异常信息识别研究——以克拉玛依地区为例
引用本文:周曙光, 周可法, 崔遥, 王金林, 汪玮, 丁建丽. 基于逻辑回归模型的化探异常信息识别研究——以克拉玛依地区为例[J]. 西北地质, 2016, 49(1): 234-240.
作者姓名:周曙光  周可法  崔遥  王金林  汪玮  丁建丽
作者单位:1.中国科学院新疆生态与地理研究所, 新疆矿产资源研究中心, 新疆 乌鲁木齐 830011;新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046;中国科学院大学, 北京 100049;; 2.中国科学院新疆生态与地理研究所, 新疆矿产资源研究中心, 新疆 乌鲁木齐 830011;; 3.新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046
基金项目:国家自然科学基金(U1129302)、科技支撑计划项目(2012BAH27B05-06)
摘    要:化探数据对矿产资源勘查工作有着重要作用,其中比较关键的工作就是从化探数据中识别矿床相关的化探异常信息.在化探异常信息识别工作中也发展出了较多的技术,但是它们大多针对单变量进行分析.为了对多变量化探数据进行分析并识别金矿相关的地球化学异常信息,笔者将逻辑回归模型用于研究区化探数据分析,通过研究区内对金矿预测比较有价值的16种元素的逻辑回归建模及模型应用,发现逻辑回归是一种有效的化探多变量数据分析和建模技术,研究结果显示,笔者建立的逻辑回归模型不仅可以有效识别已知金矿区的地球化学异常信息,而且对那些还未发现矿床的区域具有预测作用,能够为矿产资源勘查工作重点区域的选择提供指导.

关 键 词:逻辑回归   地球化学异常   金矿
收稿时间:2015-02-03
修稿时间:2015-05-13

Application of Logistic Regression Methods in Geochemical Data Analysis and Mineral Exploration: Example from Karamay Region
ZHOU Shuguang, ZHOU Kefa, CUI Yao, WANG Jinlin, WANG Wei, DING Jianli. Application of Logistic Regression Methods in Geochemical Data Analysis and Mineral Exploration: Example from Karamay Region[J]. Northwestern Geology, 2016, 49(1): 234-240.
Authors:ZHOU Shuguang  ZHOU Kefa  CUI Yao  WANG Jinlin  WANG Wei  DING Jianli
Affiliation:1.Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China;Xinjiang University, Urumqi 830046, Xinjiang, China;University of Chinese Academy of Sciences, Beijing 100049, China;; 2.Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China;; 3.Xinjiang University, Urumqi 830046, Xinjiang, China
Abstract:Geochemical data is essential for mineral exploration, and one of the main challenges is how to identify the anomaly that was related to the formation or locations of mineral deposits. Many techniques have been developed to identify geochemical anomalies in the past years, but most of these techniques are designed for univariate data. To identify geochemical anomalies from multivariate geochemical data and to get gold deposits related information, logistic regression method is used to analyze geochemical data (sixteen hydrothermal/epithermal elements are included) of this study area. The results demonstrate that the developed logistic regression model is effective for geochemical anomalies identification and gold prediction, because the model can not only identify the geochemical anomalies where there are known gold deposits, but also identify other strong geochemical anomalies where there is no known deposit. Therefore, the logistic regression method is recommended to be used to geochemical anomalies identification and mineral prediction.
Keywords:logistic regression  geochemical anomaly  gold deposit
本文献已被 CNKI 等数据库收录!
点击此处可从《西北地质》浏览原始摘要信息
点击此处可从《西北地质》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号