首页 | 本学科首页   官方微博 | 高级检索  
     

基于线性数据重构的天线动力学模型辨识方法
引用本文:侯晓拯,许谦,李琳,易乐天,薛飞,王惠,许多祥,何飞龙. 基于线性数据重构的天线动力学模型辨识方法[J]. 天文学报, 2022, 63(5): 58
作者姓名:侯晓拯  许谦  李琳  易乐天  薛飞  王惠  许多祥  何飞龙
作者单位:中国科学院新疆天文台 乌鲁木齐 830011;中国科学院新疆天文台 乌鲁木齐 830011;中国科学院射电天文重点实验室 乌鲁木齐 830011;新疆射电天体物理实验室 乌鲁木齐 830011;新疆大学物理科学与技术学院 乌鲁木齐 830046;中国科学院新疆天文台 乌鲁木齐 830011;中国科学院大学 北京 100049
基金项目:国家自然科学基金项目(11803079、U1931139), 中国科学院青年创新促进会项目(Y202019), 中国科学院天文台站设备更新及重大仪器设备运行专项经费及新疆维吾尔自治区天山雪松计划项目(2020XS12)资助
摘    要:射电望远镜天线伺服控制系统中的非线性特性, 对系统动力学特性辨识有着显著的影响, 会提高辨识难度, 增加辨识模型的复杂程度. 系统非线性特性的测量与补偿也会增加系统辨识工作量. 针对上述问题, 提出了一种基于非线性采样数据的线性重构方法, 用于动力学特性建模. 通过提取原采样数据的相位与幅值, 对受到噪声与非线性畸变影响的系统采样数据进行线性重构, 降低待辨识模型的复杂度. 搭建了半实物实验平台, 以平台实际采样为基础, 重构线性数据, 利用奇异值法与自回归神经网络评估并辨识平台动力学模型. 实验结果表明, 建模数据奇异值拐点从100阶下降至40阶, 仅用10个神经网络节点200次训练即实现了模型辨识.

关 键 词:望远镜   方法: 数据分析   技术: 其他
收稿时间:2021-11-30

Identification Method of Antenna Dynamic Models Based on Linear Data Reconstruction
HOU Xiao-zheng,XU Qian,LI Lin,YI Le-tian,XUE Fei,WANG Hui,XU Duo-xiang,HE Fei-long. Identification Method of Antenna Dynamic Models Based on Linear Data Reconstruction[J]. Acta Astronomica Sinica, 2022, 63(5): 58
Authors:HOU Xiao-zheng  XU Qian  LI Lin  YI Le-tian  XUE Fei  WANG Hui  XU Duo-xiang  HE Fei-long
Affiliation:Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011;Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011;Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi 830011;Xinjiang Key Laboratory of Radio Astrophysics, Urumqi 830011;School of Physics and Technology, Xinjiang University, Urumqi 830046;Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011;University of Chinese Academy of Sciences, Beijing 100049
Abstract:The nonlinear characteristics of radio telescope servo control system have a negative significant influence on the system dynamics characteristics identification. The measurement and compensation of system nonlinear characteristics will also increase the workload of system identification. In this research, a linear reconstruction method based on nonlinear sampling data is proposed to model dynamic characteristics. By extracting the phase and amplitude of the original sampling data, linear reconstruction of the system sampling data influenced by noise and nonlinear distortion is carried out to reduce the complexity of the model to be identified. A semi-physical experiment platform was built. Based on the actual sampling data of the platform, the linear data were reconstructed, and the dynamics model of the platform was evaluated and identified by singular value method and autoregressive neural network. The experimental results show that the singular value inflection point is reduced from 100 order to 40 order, and model identification is achieved with only 200 trainings of 10 neural network nodes.
Keywords:telescopes   methods: data analysis   techniques: miscellaneous
点击此处可从《天文学报》浏览原始摘要信息
点击此处可从《天文学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号