首页 | 本学科首页   官方微博 | 高级检索  
     

利用Faster R-CNN进行立交桥自动识别与定位
引用本文:马京振,陈换新,朱新铭,张付兵. 利用Faster R-CNN进行立交桥自动识别与定位[J]. 测绘通报, 2021, 0(3): 28-32,86. DOI: 10.13474/j.cnki.11-2246.2021.0073
作者姓名:马京振  陈换新  朱新铭  张付兵
作者单位:信息工程大学,河南 郑州450001;96911部队,北京100011
基金项目:国家自然科学基金(41571399,41771487,41901397)。
摘    要:立交桥结构的自动识别对道路网多尺度建模、空间分析和车辆导航具有重要意义.传统基于矢量数据的立交桥识别方法过分依赖人工设计的特征,对复杂场景的适应性较差.本文提出了一种基于目标检测Faster R-CNN神经网络模型的立交桥识别方法,该方法利用卷积神经网络学习立交桥样本的深层次结构特征,进而实现立交桥的自动识别与准确定位...

关 键 词:立交桥  目标检测  Faster R-CNN  深度神经网络  模式识别
收稿时间:2020-05-28
修稿时间:2021-01-09

Automatic recognition and positioning of overpass based on Faster R-CNN
MA Jingzhen,CHEN Huanxin,ZHU Xinming,ZHANG Fubing. Automatic recognition and positioning of overpass based on Faster R-CNN[J]. Bulletin of Surveying and Mapping, 2021, 0(3): 28-32,86. DOI: 10.13474/j.cnki.11-2246.2021.0073
Authors:MA Jingzhen  CHEN Huanxin  ZHU Xinming  ZHANG Fubing
Affiliation:1. Information Engineering University, Zhengzhou 450001, China;2. Troops 96911, Beijing 100011, China
Abstract:The automatic recognition of overpass structures is of great significance for multi-scale modeling,spatial analysis and vehicle navigation of road network. The traditional method of overpasses recognition based on vector data relies too much on the characteristics of manual design and has poor adaptability to complex scenes. In this paper,a method for overpasses identification based on the target detection model Faster R-CNN is proposed. This method uses convolutional neural network to learn the deep structural characteristics of samples,and then realizes the automatic recognition and accurate positioning of the overpasses. The experimental results show that the method has a good recognition effect on overpasses,and can accurately determine their positions in the complex road network,avoiding the influence of human intervention on the uncertainty of results,and has a strong anti-interference.
Keywords:overpass  target detection  Faster R-CNN  deep neural network  pattern recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号