首页 | 本学科首页   官方微博 | 高级检索  
     


First integrals for the Kepler problem with linear drag
Authors:Alessandro Margheri  Rafael Ortega  Carlota Rebelo
Affiliation:1.Fac. Ciências da Univ. de Lisboa e, Centro de Matemática,Aplica??es Fundamentais e Investiga??o Operacional,Lisbon,Portugal;2.Departamento de Matemática Aplicada,Universidad de Granada,Granada,Spain
Abstract:
In this work we consider the Kepler problem with linear drag, and prove the existence of a continuous vector-valued first integral, obtained taking the limit as (trightarrow +infty ) of the Runge–Lenz vector. The norm of this first integral can be interpreted as an asymptotic eccentricity (e_{infty }) with (0le e_{infty } le 1). The orbits satisfying (e_{infty } <1) approach the singularity by an elliptic spiral and the corresponding solutions (x(t)=r(t)e^{itheta (t)}) have a norm r(t) that goes to zero like a negative exponential and an argument (theta (t)) that goes to infinity like a positive exponential. In particular, the difference between consecutive times of passage through the pericenter, say (T_{n+1} -T_n), goes to zero as (frac{1}{n}).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号