首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Atlantic Multidecadal Oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5
Authors:Alfredo Ruiz-Barradas  Sumant Nigam  Argyro Kavvada
Institution:1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, 3435 Computer and Space Science Building, College Park, MD, 20742-2425, USA
Abstract:Decadal variability in the climate system from the Atlantic Multidecadal Oscillation (AMO) is one of the major sources of variability at this temporal scale that climate models must properly incorporate because of its climate impact. The current analysis of historical simulations of the twentieth century climate from models participating in the CMIP3 and CMIP5 projects assesses how these models portray the observed spatiotemporal features of the sea surface temperature (SST) and precipitation anomalies associated with the AMO. A short sample of the models is analyzed in detail by using all ensembles available of the models CCSM3, GFDL-CM2.1, UKMO-HadCM3, and ECHAM5/MPI-OM from the CMIP3 project, and the models CCSM4, GFDL-CM3, UKMO-HadGEM2-ES, and MPI-ESM-LR from the CMIP5 project. The structure and evolution of the SST anomalies of the AMO have not progressed consistently from the CMIP3 to the CMIP5 models. While the characteristic period of the AMO (smoothed with a binomial filter applied fifty times) is underestimated by the three of the models, the e-folding time of the autocorrelations shows that all models underestimate the 44-year value from observations by almost 50 %. Variability of the AMO in the 10–20/70–80 year ranges is overestimated/underestimated in the models and the variability in the 10–20 year range increases in three of the models from the CMIP3 to the CMIP5 versions. Spatial variability and correlation of the AMO regressed precipitation and SST anomalies in summer and fall indicate that models are not up to the task of simulating the AMO impact on the hydroclimate over the neighboring continents. This is in spite of the fact that the spatial variability and correlations in the SST anomalies improve from CMIP3 to CMIP5 versions in two of the models. However, a multi-model mean from a sample of 14 models whose first ensemble was analyzed indicated there were no improvements in the structure of the SST anomalies of the AMO or associated regional precipitation anomalies in summer and fall from CMIP3 to CMIP5 projects.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号