首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Upscale effects in simulations of tropical convection on an equatorial beta-plane
Institution:Met Office, Exeter, Devon EX1 3PB, UK;NOAA Earth System Research Laboratory, Physical SciencesDivision R/PSD5, 325 Broadway, Boulder,CO 80305-3328, United States;RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, United States
Abstract:A cloud-resolving model is configured to span the full meridional extent of the tropical atmosphere and have sufficient zonal extent to permit the representation of tropical cloud super-clusters. This is made computationally feasible by the use of anisotropic horizontal grids where one horizontal coordinate direction has over an order of magnitude finer resolution than the other direction. Typically, the meridional direction is chosen to have the coarser resolution (40 km grid spacing) and the zonal direction has enough resolution to ‘permit’ crude convective squall line ascent (1 km grid spacing). The aim was to run in cloud-resolving model (CRM) mode yet still have sufficient meridional resolution and extent to capture the equatorial trapped waves and the Hadley circulation. The large-scale circulation is driven by imposed uniform tropospheric cooling in conjunction with a fixed sea surface temperature distribution. At quasi-equilibrium the flow is characterized by sub-tropical jetstreams, tropical squall line systems that form eastward-propagating super-clusters, tropical depressions and even hurricanes.Two scientific issues are briefly addressed by the simulations: what forces the Hadley circulation and the nature of stratospheric waves appearing in the simulation. It is found that the presence of a meridional sea surface temperature gradient is not sufficient on its own to force a realistic Hadley circulation even though convection communicates the underlying temperature gradient to the atmosphere. It is shown in a simulation that accounts for the observed time and zonal-mean momentum forcing effect of large-scale eddies (originating in middle latitudes) that the heaviest precipitation is concentrated near the equator in association with moisture flux convergence driven by the Trade winds.A spectral analysis of the stratospheric waves found on the equator using the dispersion relation for equatorially-trapped waves provides strong evidence for the existence of a domain-scale Kelvin wave together with eastward and westward propagating inertia-gravity waves. The eastward-propagating stratospheric waves appear to be part of a convectively coupled wave system travelling at about 15 ms?1.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号