首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dolomite-bearing orogenic garnet peridotites witness fluid-mediated carbon recycling in a mantle wedge (Ulten Zone,Eastern Alps,Italy)
Authors:Giovanna T Sapienza  Marco Scambelluri  Roberto Braga
Institution:(1) Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Bologna, Italy;(2) Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova, Genova, Italy;(3) Present address: D&M Schlumberger Italiana S.p.A., Via Bondi 32, 48100 Ravenna, Italy
Abstract:We document the presence of dolomite ± apatite in orogenic peridotites from the Ulten Zone (UZ, Italian Alps), the remnants of a Variscan mantle wedge tectonically coupled with eclogitized continental crust. These dolomite peridotites are associated with dominant carbonate-free amphibole peridotites, which formed in response to infiltration of aqueous subduction fluids lost by the associated crustal rocks during high-pressure (HP) metamorphism and retrogression. Dolomite-free and dolomite-bearing peridotites share the same metamorphic evolution, from garnet- (HP) to spinel-facies (low-pressure, LP) conditions. Dolomite and the texturally coexisting phases display equilibrium redistribution of rare earth elements and of incompatible trace elements during HP and LP metamorphism; clinopyroxene and amphiboles from carbonate-free and carbonate-bearing peridotites have quite similar compositions. These features indicate that the UZ mantle rocks equilibrated with the same metasomatic agents: aqueous CO2-bearing fluids enriched in incompatible elements released by the crust. The PT crystallization conditions of the dolomite peridotites (outside the field of carbonatite melt + amphibole peridotite coexistence), a lack of textures indicating quench of carbonic melts, a lack of increase in modal clinopyroxene by reaction with such melts and the observed amphibole increase at the expense of clinopyroxene, all suggest that dolomite formation was assisted by aqueous CO2-bearing fluids. A comparison of the trace element compositions of carbonates and amphiboles from the UZ peridotites and from peridotites metasomatized by carbonatite and/or carbon-bearing silicate melts does not help to unambiguously discriminate between the different agents (fluids or melts). The few observed differences (lower trace element contents in the fluid-related dolomite) may ultimately depend on the solute content of the metasomatic agent (CO2-bearing fluid versus carbonatite melt). This study provides strong evidence that C–O–H subduction fluids can produce ‘carbonatite-like’ assemblages in mantle rocks, thus being effective C carriers from the slab to the mantle wedge at relatively low PT. If transported beyond the carbonate and amphibole solidus by further subduction, dolomite-bearing garnet + amphibole peridotites like the ones from Ulten can become sources of carbonatite and/or C-bearing silicate melts in the mantle wedge. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. In memory of Lauro Morten 1941–2006.
Keywords:Dolomite-bearing peridotites  Mantle wedge  C–  O–  H fluid  Subduction fluids  Ulten Zone
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号