首页 | 本学科首页   官方微博 | 高级检索  
     

海底声学底质分类的ELM-AdaBoost方法
引用本文:王嘉翀,吴自银,王明伟,等. 海底声学底质分类的ELM-AdaBoost方法[J]. 海洋学报,2021,43(12):144–151 doi: 10.12284/hyxb2021091
作者姓名:王嘉翀  吴自银  王明伟  周洁琼  赵荻能  罗孝文
作者单位:1.自然资源部第二海洋研究所 自然资源部海底科学重点实验室,浙江 杭州 310012;;2.山东科技大学 测绘与空间信息学院,山东 青岛 266590
基金项目:国家自然科学基金(41830540,42006073,41906069);浙江省自然科学基金(LY21D060002);中央级公益性科研所基本科研业务费专项资金项目(JZ1902,JG2005,SZ2002);卫星海洋环境动力学国家重点实验室自主项目(SOEDZZ2101);全球变化与海气相互作用专项(GASI-EOGE-01)
摘    要:基于自适应增强算法(AdaBoost)结合极限学习机(ELM),通过迭代、调整、优化ELM分类器之间的权值,从而构建了具有强鲁棒性、高精度的ELM-AdaBoost强分类器,增强了现有的ELM分类器的稳定性。以珠江口海区侧扫声呐图像为实验数据,对礁石、砂、泥3类典型底质进行分类识别,该方法的平均分类精度超过90%,优于单一ELM分类器的平均分类精度85.95%,也优于LVQ、BP等传统分类器,且在分类所耗时间上也远少于传统分类器。实验结果表明,本文构建的ELM-AdaBoost方法可有效应用于海底声学底质分类,可满足实时底质分类的需求。

关 键 词:极限学习机   自适应增强算法   底质分类   声呐图像   特征提取
收稿时间:2020-10-11
修稿时间:2021-01-19

ELM-AdaBoost method of acoustic seabed sediment classification
Wang Jiachong,Wu Ziyin,Wang Mingwei, et al. ELM-AdaBoost method of acoustic seabed sediment classification[J]. Haiyang Xuebao,2021, 43(12):144–151 doi: 10.12284/hyxb2021091
Authors:Wang Jiachong  Wu Ziyin  Wang Mingwei  Zhou Jieqiong  Zhao Dineng  Luo Xiaowen
Affiliation:1. Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;;2. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
Abstract:Based on the adaptive boosting algorithm (AdaBoost) combined with the extreme learning machine (ELM), the strong classifier of ELM-AdaBoost with strong robustness and high precision is thus constructed by iterating, adjusting, and optimizing the weights between each ELM classifier. ELM-AdaBoost method can enhance the stability of the existing ELM classifier. In this paper, the data collected by side scan sonar in the Zhujiang River Estuary was used to classify and identify three types of typical sediments as rock, sand, and mud. The average classification accuracy of new method exceeds 90%, which is better than the average classification accuracy of a single ELM classifier of 85.95%. It is also superior to other traditional classifiers (i.e. LVQ and BP) and it takes much less time to classify than traditional classifiers. The experimental result shows that the proposed ELM-AdaBoost method can be effectively applied to the classification and identification of seabed sediment and can meet the needs of real-time classification of seabed sediment.
Keywords:extreme learning machine  adaptive boosting algorithm  sediment classification  sonar image  feature extraction
本文献已被 万方数据 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号