首页 | 本学科首页   官方微博 | 高级检索  
     


Lithic fragments,glasses and chondrules from Luna 16 fines
Authors:Klaus Keil  Gero KuratMartin Prinz  Jonathan A. Green
Affiliation:Department of Geology and Institute of Meteoritics, The University of New Mexico, Albuquerque, New Mexico , 87106,USA
Abstract:
Bulk compositions of igneous and microbreccia lithic fragments, glasses, and chondrules from Luna 16 fines as well as compositions of minerals in basaltic lithic fragments were determined with the electron microprobe. Igneous lithic fragments and glasses are divided into two groups, the anorthositic-noritic-troctolitic (hereafter referred to as ANT) and basaltic groups. Chondrules are always of ANT composition and microbreccia lithic fragments are divided into groups 1 and 2. The conclusions reached may be summarized as follows: (1) Luna 16 fines are more similar in composition to Apollo 11 than to Apollo 12 and 14 materials (e.g. Apollo 11 igneous lithic fragments and glasses fall into similar ANT and basaltic groups; abundant norites in Luna 16 and Apollo 11 are not KREEP as in Apollo 12 and 14; Luna 16 basaltic lithic fragments may represent high-K and low-K suites as is the case for Apollo 11; rare colorless to greenish, FeO-rich and TiO2-poor glasses were found in both Apollo 11 and Luna 16; Luna 16 spinels are similar to Apollo 11 spinels but unlike those from Apollo 12). (2) No difference was noted in the composition of lithic fragments, glasses and chondrules from Luna 16 core tube layers A and D. (3) Microbreccia lithic fragments of group 1 originated locally by mixing of high proportions of basaltic with small proportions of ANT materials. (4) Glasses are the compositional analogs to the lithic fragments and not to the microbreccias; most glasses were produced directly from igneous rocks. (5) Glasses show partial loss of Na and K due to vaporization in the vitrification process. (6) Luna 16 chondrules have ANT but not basaltic composition. It is suggested that either liquid droplets of ANT composition are more apt to nucleate from the supercooled state; or basaltic droplets have largely been formed in small and ANT droplets in large impact events (in the latter case, probability for homogeneous and inhomogeneous nucleation is larger. (7) No evidence for ferric iron and water-bearing minerals was found. (8) Occurrence of a great variety of igneous rocks in Luna 16 samples (anorthosite, noritic anorthosite, anorthositic norite, olivine norite, troctolite, and basalt) confirm our earlier conclusion that large-scale melting or partial melting to considerable depth and extensive igneous differentiation must have occurred on the moon.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号