首页 | 本学科首页   官方微博 | 高级检索  
     

ERA-Interim气温数据在中国区域的适用性评估
引用本文:高路,郝璐. ERA-Interim气温数据在中国区域的适用性评估[J]. 福建地理, 2014, 0(2): 75-81
作者姓名:高路  郝璐
作者单位:[1]福建师范大学地理科学学院,福州350007 [2]福建省陆地灾害监测评估工程技术研究中心,福州350007 [3]南京信息工程大学应用气象学院,南京210044
基金项目:福建省公益类科研院所专项重点项目(2013R04)、福建省科技厅产学研重大项目(2012Y4001)
摘    要:运用中国756个观测站点的逐月平均气温数据,对比分析了ERA-Interim再分析资料的误差。结果发现:ERA-Interim再分析资料能够很好地反映观测值的年际变化,相关性达到0.955~0.995。ERA-Interim在580个站点的冷偏差或暖偏差小于1℃,占站点总数的76.7%,可信度较高。64个站点的冷偏差或暖偏差大于5℃,可信度较低。ERA-Interim在东部地区的暖偏差多于西部地区,冷偏差的高值主要集中在西部地区的高海拔站点。海拔低于200 m的站点偏差最小,适用性好,多数海拔3 000 m以上的站点呈现较大冷偏差,适用性较差。通过回归分析发现,观测站点与ERA-Interim格点的高度差是导致误差的主要原因,因此通过高程校正能够有效降低误差,提高ERA-Interim适用性。

关 键 词:月平均气温  误差  再分析资料  ECMWF

Verification of ERA-Interim Reanalysis Data over China
GAO Lu,HAO Lu. Verification of ERA-Interim Reanalysis Data over China[J]. Journal of Subtropical Resources and Environment, 2014, 0(2): 75-81
Authors:GAO Lu  HAO Lu
Affiliation:1. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; 2. Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial Disasters, Fuzhou 350007, China; 3. College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China)
Abstract:In this paper, the monthly average temperatures derived from 756 meteorological stations over China were compared with ERA-Interim reanalysis data for the verification. The bias analysis indicated that the ERA-Interim reanalysis data could capture the inter-annual variability of observations very well with high temporal correlation values (0. 955 -0. 995 ). ERA-Interim shows the good reliability at 580 (76. 7% ) stations with cooler or wanner bias smaller than 1℃. The weak reliability was found at 64 stations with cooler or wanner bias higher than 5 ℃. ERA-Interim reanalysis data haswarmer bias in eastern China than in western China, and greater cooler biases distribute at the high el- evated stations in the west of China. ERA-Interim is more suitable for lower elevated stations ( 〈 200m) than the majority of high stations ( 〉3 000 m). The main reason for the bias is height differences among elevations of observations and ERA-Interim grid heights using linear regression analysis. Therefore. the bias could be significantly reduced via the elevation correction method.
Keywords:monthly average temperature  bias  reanalysis data  ECMWF
本文献已被 CNKI 维普 等数据库收录!
正在获取引用信息,请稍候...
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号