首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heat capacity,entropy, and phase equilibria of dmitryivanovite
Authors:Email author" target="_blank">Wenjun?YongEmail author  Edgar?Dachs  Artur?Benisek  Anthony?C?Withers  Richard?A?Secco
Institution:1.Department of Earth Sciences,University of Western Ontario,London,Canada;2.Fachbereich Materialforschung & Physik, Abteilung Mineralogie,Universit?t Salzburg,Salzburg,Austria;3.Department of Earth Sciences,University of Minnesota,Minneapolis,USA
Abstract:The heat capacity (C p ) of dmitryivanovite synthesized with a cubic press was measured in the temperature range of 5–664 K using the heat capacity option of a physical properties measurement system and a differential scanning calorimeter. The entropy of dmitryivanovite at standard temperature and pressure (STP) was calculated to be 110.1 ± 1.6 J mol−1 K−1 from the measured C p data. With the help of new phase equilibrium experiments done at 1.5 GPa, the phase transition boundary between krotite and dmitryivanovite was best represented by the equation: P (GPa) = −2.1825 + 0.0025 T (K). From the temperature intercept of this phase boundary and other available thermodynamic data for krotite and dmitryivanovite, the enthalpy of formation and Gibbs free energy of formation of dmitryivanovite at STP were calculated to be −2326.7 ± 2.1 and −2,208.1 ± 2.1 kJ mol−1, respectively. It is also inferred that dmitryivanovite is the stable CaAl2O4 phase at STP and has a wide stability field at high pressures whereas the stability field of krotite is located at high temperatures and relatively low pressures. This conclusion is consistent with natural occurrences (in Ca–Al-rich inclusions) of dmitryivanovite and krotite, where the former is interpreted as the shock metamorphic product of originally present krotite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号