首页 | 本学科首页   官方微博 | 高级检索  
     

公众气象服务支付意愿影响因素研究
引用本文:崔维军,向焱,陈亚兰,罗玉,顾春霞. 公众气象服务支付意愿影响因素研究[J]. 气象与环境学报, 2014, 30(1): 100-107
作者姓名:崔维军  向焱  陈亚兰  罗玉  顾春霞
作者单位:南京信息工程大学经济管理学院,江苏 南京 210044
基金项目:公益性行业(气象)科研专项(GYHY201106037)和中国气象局气象软科学项目“公共气象服务效益评估方法研究”共同资助.
摘    要:基于中国气象局2008年调查数据,运用二分Logistic回归、最优尺度回归和判定树CRT模型分析了公众气象服务支付意愿的影响因素。结果表明:个体因素中年龄与文化程度对公众气象服务支付意愿(包括是否支付与支付多少)有显著影响,而性别因素只对支付多少有显著影响,对是否支付没有显著影响;收入因素对公众气象服务支付意愿有显著影响;关注程度、天气预报准确性、天气预报及时性、气象服务总体满意度对公众气象服务支付数额多少有显著影响,但影响程度很小;个体因素与收入因素对公众气象服务支付意愿影响程度较高,而心理因素影响程度很小。

关 键 词:支付意愿  Logistic回归  最优尺度回归  判定树CRT法  

Study of impact factors about willingness to pay for public meteorological service
CUI Wei-jun,XIANG Yan,CHEN Ya-lan,LUO Yu,GU Chun-xia. Study of impact factors about willingness to pay for public meteorological service[J]. Journal of Meteorology and Environment, 2014, 30(1): 100-107
Authors:CUI Wei-jun  XIANG Yan  CHEN Ya-lan  LUO Yu  GU Chun-xia
Affiliation:School of Economics and Management, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract:Based on survey data in China Meteorological Administration in 2008, the impact factors about willing- ness to pay (WTP) for public meteorological service were analyzed by the methods of a binary Logistic regression, an optimal scaling regression and a classification regression tree (CRT). The results show that the individual factors such as age and education level have significant influence on WTP including whether to pay ( WTP1 ) and how much to pay (WTP2), while gender has only significant influence on WTP2 but not on WTP1. The income has sig- nificant influence to WTP. The four factors including concerning degree for weather forecast, accuracy and timeli- ness of prediction, overall satisfaction on meteorological service have significant influence on WTP2, while the im- pact is very small. The individual factors and income have greater impact on WTP compared with the psychological factors.
Keywords:Willingness to pay  Logistic regression  Optimal scaling regression  Classification regression tree( CRT ) method
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《气象与环境学报》浏览原始摘要信息
点击此处可从《气象与环境学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号