首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP人工神经网络的水体遥感测深方法研究
引用本文:王艳姣 张鹰. 基于BP人工神经网络的水体遥感测深方法研究[J]. 海洋工程, 2005, 23(4): 33-38
作者姓名:王艳姣 张鹰
作者单位:南京师范大学,地理科学学院,江苏,南京,210097
基金项目:国家自然科学基金重点资助项目(50339010);国家“十五”、“211”资助项目
摘    要:利用Landsat7ETM+遥感图像反射率和实测水深值之间的相关性,建立了动量BP人工神经网络水深反演模型,并对长江口南港河段水深进行了反演.结果表明:具有较强非线性映射能力的动量BP神经网络模型能较好地反演出长江口南港河段的水深分布情况;由于受长江口水体高含沙量的影响,模型对小于5 m的水深值反演精度较高,而对大于10 m的水深值反演精度较低.

关 键 词:长江口 BP神经网络 水深遥感 反演模型
文章编号:1005-9865(2005)04-0033-06
收稿时间:2005-01-05
修稿时间:2005-01-05

Study on remote sensing of water depth based on BP artificial neural networks
WANG Yan-jiao,ZHANG Ying. Study on remote sensing of water depth based on BP artificial neural networks[J]. The Ocean Engineering, 2005, 23(4): 33-38
Authors:WANG Yan-jiao  ZHANG Ying
Affiliation:The School of Geographical Science of Nanjing Normal University, Nanjing 210097, China
Abstract:A momentum BP neural network model(MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between reflectance derived from Landsat ETM+ satellite data and water depth information.Results show that MBPNNM,which exhibits a strong capability of non-linear mapping,allows the water depth information in the study area to be retrieved at a relatively high accuracy level.Affected by the sediment concentration of water in the estuary,MBPNNM enables the retrieval of water depth of less than 5 meters accurately.However,the accuracy is not ideal for the water depth of more than 10 meters.
Keywords:Yangtze River Estuary   BP neural network   water-depth remote sensing   retrieval model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《海洋工程》浏览原始摘要信息
点击此处可从《海洋工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号