LSSVM算法在极化SAR影像分类中的应用 |
| |
引用本文: | 孟云闪,余洁,刘利敏,张中山,隋克林. LSSVM算法在极化SAR影像分类中的应用[J]. 地理空间信息, 2012, 10(3): 43-45. DOI: 10.3969/j.issn.1672-4623.2012.03.014 |
| |
作者姓名: | 孟云闪 余洁 刘利敏 张中山 隋克林 |
| |
作者单位: | 1.武汉大学遥感信息工程学院,湖北武汉,430079;2.武汉大学遥感信息工程学院,湖北武汉430079 中国电子科技集团第38研究所,安徽合肥230031;3.武汉大学遥感信息工程学院,湖北武汉430079 天津测绘院,天津300381 |
| |
基金项目: | 国家863计划资助项目(2011AA120404) |
| |
摘 要: | 最小二乘支持向量机(LSSVM)是针对标准支持向量机(SVM)算法训练时间长的问题而提出的一种改进算法。针对SVM算法在极化SAR影像分类时存在效率较低的问题,以目标分解理论为基础,对LSSVM算法应用于极化SAR影像分类的有效性进行了研究。结果表明,对于极化SAR影像分类,LSSVM算法与SVM算法的分类精度相当,但时间效率远优于SVM算法,并且对参数的调整也具有更好的稳定性,同时泛化能力良好。
|
关 键 词: | 极化合成孔径雷达 LSSVM 分类 |
Research on Polarimetric SAR Image Classification Based on Least Squares Support Vector Machine |
| |
Affiliation: | MENG Yunshan |
| |
Abstract: | The LSVM algorithm was put forward for the inherent shortcomings of long training time that standard support vector machine algorithm has.In order to solve the efficiency problem that the SVM algorithm has in supervised classification for the polarimetric SAR images,based on the target decomposition theory,we used the LSVM algorithm to do supervised classification for the polarimetric SAR images and tested the effectiveness of this algorithm for the classification of the polarimetric SAR images.The experiment shows that,in the polarimetric SAR image classification applications,the LSSVM algorithm can be quite the classification accuracy with SVM,and though the efficiency and accuracy comparison find that the LSSVM algorithm has a faster speed and better stability,and has a better generalization ability. |
| |
Keywords: | Polarimetric SAR LSSVM classification |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
|