首页 | 本学科首页   官方微博 | 高级检索  
     


Probabilistic analysis of strip footings resting on a spatially random soil using subset simulation approach
Abstract:The failure probability of geotechnical structures with spatially varying soil properties is generally computed using Monte Carlo simulation (MCS) methodology. This approach is well known to be very time-consuming when dealing with small failure probabilities. One alternative to MCS is the subset simulation approach. This approach was mainly used in the literature in cases where the uncertain parameters are modelled by random variables. In this article, it is employed in the case where the uncertain parameters are modelled by random fields. This is illustrated through the probabilistic analysis at the serviceability limit state (SLS) of a strip footing resting on a soil with a spatially varying Young's modulus. The probabilistic numerical results have shown that the probability of exceeding a tolerable vertical displacement (P e) calculated by subset simulation is very close to that computed by MCS methodology but with a significant reduction in the number of realisations. A parametric study to investigate the effect of the soil variability (coefficient of variation and the horizontal and vertical autocorrelation lengths of the Young's modulus) on P e was presented and discussed. Finally, a reliability-based design of strip footings was presented. It allows one to obtain the probabilistic footing breadth for a given soil variability.
Keywords:subset simulation  Monte Carlo simulation  random field  spatial variability  Karhunen-Loeve expansion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号