A high accuracy method for determining nitrogen, argon and oxygen in seawater |
| |
Authors: | Shinichi S. Tanaka Yutaka W. Watanabe |
| |
Affiliation: | aGraduate School of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, 060-0810, Japan |
| |
Abstract: | An improved gas chromatographic system was constructed to analyze oceanic dissolved N2, Ar and O2 with a higher accuracy and shorter analytical time. To obtain a higher accuracy of N2, Ar and O2 measurements, the following was added to the system: (I) an air trapping system; (II) a N2–CO2 trapping system after the operation of the air trapping system; (III) an active carbon column system for separating N2 and CO2 completely and (IV) the introduction of automatic valves controlling most of the system. Compared to previous studies, the precision of the measurements of N2, Ar and O2 concentrations was higher at 0.04%, 0.05% and 0.02%, respectively, and our analytical time was shorter at 600 s. Using the improved analytical technique, concentrations of N2 (CN2, 561.69–611.81 μmol/kg) and Ar (CAr, 15.126–16.238 μmol/kg), saturation states of N2 (ΔN2, − 5.1–0.9%) and Ar (ΔAr, − 7.0 to − 1.1%) from 0 m to 3000 m depth in the western North Pacific were observed during March 2005. Based on these data, we propose a new concept for estimating the amount of bubble injection (B). The total error in calculating B was estimated to be about 20%. We estimated B from 12 to 43 μmol/kg in this region using the observational values of N2 and Ar. As each water mass had a significantly different value of B even with an error of 20%, it is possible to use it as an index of sea surface state for when each water mass is produced in the sea surface mixed layer. Moreover, based on our values of B, we estimated preformed dissolved oxygen (DO) (CpreDO, 309–332 μmol/kg) and the saturation state of CpreDO (ΔpreDO, − 7.0 to − 1.2%) in this region. Thus, the difference between CpreDO and DO content in the ocean interior may be a more useful index for biogenic organic decomposition in the ocean field compared to Apparent Oxygen Utilization (AOU). Until now, the estimation of oceanic uptake of anthropogenic CO2 has used AOU as a major parameter. Therefore, it may be necessary to re-evaluate the oceanic uptake of anthropogenic CO2 based on our new concept of B. |
| |
Keywords: | Gas chromatography Nitrogen Argon Oxygen Bubble injection North Pacific |
本文献已被 ScienceDirect 等数据库收录! |
|