Seismicity in the vicinity of Ross Island, Antarctica |
| |
Authors: | C.A Rowe J Kienle |
| |
Abstract: | Earthquakes in the Ross Sea, Antarctica, are of two types: volcanic, and those which appear to be of tectonic origin. Volcanic events in the vicinity of Ross Island are associated exclusively with Mount Erebus, Ross Island; this volcano erupts regularly, generating several earthquakes per day whose characteristics are quite distinct from non-volcanic events. These nonvolcanic earthquakes are recognizable by their distinct P- and S-wave arrivals, and a lack of the high frequency, often monochromatic character typical of Erebus events.One hundred fifty-seven tectonic microearthquakes (M < 2.0) were recorded in 1983 and 1984 by the ten station network on Ross Island; these events were located using the least-squares routine, HYPOELLIPSE. Of these events, 106 have RMS residual traveltime errors of less than or equal to 0.6 seconds; they are clustered in the vicinity of Ross Island, but are not restricted to it. There is a linear trend of epicenters cutting across the island and continuing northward. Most activity seems to center beneath Mount Terra Nova, between Mount Erebus and Mount Terror. Mean depth for events is 8.2 km; however, depths are rather evenly distributed over a range of 0 to 25 km.Modelling based on Bouger gravity anomalies and seismic refraction studies indicates a depth to the Moho of about 40 km beneath the continent, shallowing to 27 km beneath the Ross Sea. This 27 km depth is approximately equal to the lower limit of the tectonic seismicity detected by the Erebus network; hence, events are of crustal origin. These data suggest, with the rift-type geochemistry of Erebus' magma, that the Ross Sea is a site of active crustal extension and rifting. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|