首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal comfort and forecast of energy consumption in Northwest Iran
Authors:Gholamreza Roshan  Abdolazim Ghanghermeh  José Antonio Orosa
Institution:1. Department of Geography, Faculty of Human Science, Golestan University, Gorgan, Iran
2. Department of Energy and M.P., E.T.S.NyM, University of A Coru?a, Paseo de Ronda 51, 15011, A Coru?a, Spain
Abstract:Assessing the climatic characteristics and identifying the climatic parameters of a specific region can play a major role in human welfare. Thermal comfort conditions are among the most significant factors of climatic variables in the northwestern regions of Iran due to the considerable spatial and temporal variations and are vital for environmental, energy and economic management. It is therefore necessary to advance our knowledge of the climatic conditions in order to provide an appropriate tool for managing climatic extremes. This requires charting of the range of clusters of the thermal comfort conditions in this region. In this study, the general atmosphere circulation model HADCM3 and the A1 scenario, downscaled by the LARS-WG model, were employed to simulate the climatic conditions in Iran during the period 2011–2040. The data obtained were compared with sampled data from six Iranian climatic stations for the 30-year period (1961–1990). In order to tabulate this comparison, six clusters per climatic station were defined based on intrinsic similarity of data. Results show an increase in the annual average temperature of these six stations by 1.69 °C for the predicted years, projected from the base years 1961–1990. This factor has resulted in an increment of the annual average thermal comfort temperature inside buildings by a magnitude of 0.52 °C in future decades. When the thermal requirements of the studied region were evaluated based on the real temperature difference and the degree of thermal comfort, it becomes clear that apart from cluster 1, the energy required to reach thermal comfort inside buildings will increase in the future. As a result of this temperature increase, an increase of the energy required to reach the thermal comfort is expected. This new methodology is an interesting tool and needs to be seriously considered by engineers and architects in designing buildings of the future.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号