An assessment of coefficient accuracy in linear regression models with spatially varying coefficients |
| |
Authors: | David C. Wheeler Catherine A. Calder |
| |
Affiliation: | (1) Department of Biostatistics, Emory University, Atlanta, GA, USA;(2) Department of Statistics, The Ohio State University, Columbus, OH, USA |
| |
Abstract: | The realization in the statistical and geographical sciences that a relationship between an explanatory variable and a response variable in a linear regression model is not always constant across a study area has led to the development of regression models that allow for spatially varying coefficients. Two competing models of this type are geographically weighted regression (GWR) and Bayesian regression models with spatially varying coefficient processes (SVCP). In the application of these spatially varying coefficient models, marginal inference on the regression coefficient spatial processes is typically of primary interest. In light of this fact, there is a need to assess the validity of such marginal inferences, since these inferences may be misleading in the presence of explanatory variable collinearity. In this paper, we present the results of a simulation study designed to evaluate the sensitivity of the spatially varying coefficients in the competing models to various levels of collinearity. The simulation study results show that the Bayesian regression model produces more accurate inferences on the regression coefficients than does GWR. In addition, the Bayesian regression model is overall fairly robust in terms of marginal coefficient inference to moderate levels of collinearity, and degrades less substantially than GWR with strong collinearity. |
| |
Keywords: | Bayesian regression Geographically weighted regression MCMC Simulation study Spatial statistics Collinearity |
本文献已被 SpringerLink 等数据库收录! |
|