首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tektites: A post-Apollo view
Authors:Stuart Ross Taylor
Abstract:Prior to the receipt of the lunar samples, it was the scientific consensus that tektites were melted and splashed material formed during large cometary or meteorite impact events. Whether the impact took place on the Earth or the Moon was the topic of a long-standing scientific debate, which raged with particular intensity during the decade previous to the lunar landings.Four definite and separate tektite-strewn fields are known: bediasites (North America, 34 m.y.); moldavites (Czechoslovakia, 14 m.y.); Ivory Coast (1.3 m.y.); and Southeast Asian and Australian fields (0.7 m.y.). A fifth possible occurrence, of high-Na australites, possibly 3–4 m.y. old, remains to be substantiated. The age of infall of the australites is not agreed upon. Radiometric and fission track dates agree with the magnetic stratigraphy for deep-sea core microtektite occurrences at about 0.7 m.y. Terrestrial stratigraphic evidence favours a recent (30,000 years) date.The chemistry of tektites appears to reflect that of the parent material, and losses during fusion appear to be restricted to elements and compounds more volatile than cesium. Terrestrial impact glasses provide small-scale analogues of tektite-forming events, and indicate that only the most volatile components are lost during fusion.The Apollo lunar missions provide critical evidence which refutes the hypothesis of lunar origin of tektites. Tektite chemistry is totally distinct from that observed in lunar maria basalts. These possess Cr contents which are two orders of magnitude higher than tektites, distinctive REE patterns with large Eu depletions, high Fe and low SiO2 contents, low K/U ratios and many other diagnostic features, none of which are observed in the chemistry of tektites. The lunar uplands compositions, as shown by Apollo 14, 15 and 16 samples and the μ-ray and XRF orbiter data, are high-Al, low-SiO2 compositions totally dissimilar to those of tektites. The composition of lunar rock 12013 shows typical lunar features and is distinct from that of tektites. The small amounts of lunar K-rich granitic material found in the soils have K/Mg and K/Na ratios 10–50 times those of tektites.The ages of the lunar maria (3.2–3.8 aeons) and uplands (> 4.0 aeons) are an order of magnitude older than the parent material of the Southeast Asian and Australian tektites, which yield Rb-Sr isochrons indicating ages of the order of 100–300 m.y. The lunar lead isotopic compositions are highly radiogenic whereas tektites have terrestrial Pb isotopic ratios. Lunar δ18 O values are low (< 7 per mil) compared with values of +9.6 to +11.5 per mil for tektites. In summary, a lunar impact origin for tektites is not compatible with the chemistry, age or isotopic composition of the lunar samples. A lunar volcanic origin, recently revived by O'Keefe (1970) encounters most of the same problems. Recent lunar volcanism (< 50 m.y.), if the source of tektites, should contribute tektite glass to the upper layers of the regolith. None has been found. The presence of meteoritic components in tektites, and the high pressure phase coesite, are more readily interpreted as evidence of impact.The element abundances and inter-element variations in tektites do not resemble those in terrestrial igneous rocks, but show a close similarity to terrestrial sandstones. The composition of the Southeast Asian tektites, australites and moldavites resembles that of micaceous sandstones or subgreywackes, the Ivory Coast tektite composition is similar to that of greywacke, and the bediasite chemistry is analogous to that of arkose.No suitable terrestrial impact site has been identified for the bediasites, Southeast Asian tektites and australites. It is suggested that a search for the source of these latter strewnfields be made using satellite photographs to look for wide shallow craters produced by super-Tunguska type events on areas of Mesozoic sandstones. The moldavites were possibly formed during the Ries Crater event but, if so, the precise source of the material remains to be identified. The Ivory Coast tektites are linked by chemistry, isotope and age evidence to the Bosumtwi Crater, Ghana. The overall evidence now supports the origin of tektites by cometary (or meteorite) impact on terrestrial sedimentary rocks.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号