首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling Trophic Structure and Energy Flows in a Coastal Artificial Ecosystem Using Mass-Balance Ecopath Model
Authors:Shannan Xu  Zuozhi Chen  Shiyu Li  Peimin He
Institution:(1) School of Environmental Science and Engineering, Sun Yat-sen University, No. 135 Xingang West Road, Guangzhou, 510275, China;(2) Key Laboratory of Mariculture, Ecology and Quality Control, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China;(3) College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
Abstract:Using a large-scale enclosed sea area in northern Hangzhou Bay as a case study, the trophic interactions, energy flows, and ecosystem properties of a coastal artificial ecosystem were analyzed by ecotrophic modeling using Ecopath with Ecosim software (EwE, 5.1 version). The model consists of 13 functional groups: piscivorous fish, benthic-feeding fish, zooplanktivorous fish, herbivorous fish, crabs, shrimp, mollusca, infauna, carnivorous zooplankton, herbivorous zooplankton, macrophytes, phytoplankton, and detritus. Input information for the model was gathered from published and unpublished reports and from our own estimates during the period 2006–2007. Results show that the food web in the enclosed sea area was dominated by a detritus pathway. The trophic levels of the groups varied from 1.00 for primary producers and detritus to 3.90 for piscivorous fish in the coastal artificial system. Using network analysis, the system network was mapped into a linear food chain, and five discrete trophic levels were found with a mean transfer efficiency of 9.8% from detritus and 9.4% from primary producer within the ecosystem. The geometric mean of the trophic transfer efficiencies was 9.6%. Detritus contributed 57% of the total energy flux, and the other 43% came from primary producers. The ecosystem maturity indices—total primary production/total respiration, Finn’s cycling index, and ascendancy—were 2.56, 25.0%, and 31.0%, respectively, showing that the coastal artificial system is at developmental stage according to Odum’s theory of ecosystem development. Generally, this is the first trophic model of a large-scale artificial sea enclosure in China and provides some useful insights into the structure and functioning of the system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号