首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical study of droplet size dependent chemistry in oceanic,wintertime stratus cloud at southern mid-latitudes
Authors:G P Ayers  T V Larson
Institution:(1) Division of Atmospheric Research, CSIRO, Private Bag 1, 3195 Mordialloc, Vic., Australia;(2) Department of Civil Engineering, University of Washington, 98195 Seattle, WA, U.S.A.
Abstract:Cloud droplet chemistry is modelled for the first 150 m of rise in a wintertime, mid-latitude, marine stratus cloud using observations made at and near the Cape Grim Baseline Station as a source of input parameters. The emphasis in this work was to study the variation in droplet chemistry as a function of both droplet size and nucleus composition, with a particular focus on the way in which oxidation of dissolved sulfur dioxide varied.At 150 m above the condensation level, solute concentration as a function of droplet size was found to increase by as much as 2 to 3 orders of magnitude for only a factor of 2 increase in droplet radius, primarily as a consequence of the 1/r dependence in the droplet growth equation. This type of size dependence exists at all levels in the model cloud, and has a significant influence on oxidation rate of sulfur dioxide in droplets growing on lsquosulfatersquo nuclei, oxidation by ozone being favoured in the smallest droplets, but oxidation by hydrogen peroxide being favoured in the larger droplets. Oxidation by ozone is favoured at all sizes in droplets formed on sea-salt nuclei as a result of the initially high alkalinity of these droplets, and in the cloud overall is calculated to be the more important oxidation pathway. Although based on a simplified chemical scheme, these results suggest that both size-dependent and nucleus-dependent chemistry of cloud droplets may need to be considered explicitly in cloud modelling work.Volume-weighted mean pH values in the range 5 to 6 were predicted from sensitivity studies in which input variables were varied over reasonable ranges, in agreement with two sets of bulk cloud-water pH data obtained by aircraft near Cape Grim.
Keywords:Cloud chemistry  stratus cloud  numerical modelling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号