首页 | 本学科首页   官方微博 | 高级检索  
     


Laboratory and field performance of recycled aggregate base in a seasonally cold region
Authors:Tuncer B. Edil  Bora Cetin  Ali Soleimanbeigi
Affiliation:Recycled Materials Resource Center, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA;Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, USA;Department of Civil and Environmental Engineering, University of Wisconsin-Platteville, Platteville, WI, USA
Abstract:The objective of this project was to characterize the freeze-thaw properties of recycled concrete (RCA) and asphalt (RAP) as unbound base and to assess how they behaved in the field for nearly 8 years. This paper includes an examination of existing information, laboratory studies of freeze-thaw behavior, and evaluation of data from MnROAD field-test sections in a seasonally cold region, i.e., in Minnesota, USA. Test sections were constructed using recycled materials in the granular base layers at the MnROAD test facility. One test section included 100% RAP, another 100% RCA, a third one a 50/50 blend of RCA/natural aggregate, and a fourth one only natural aggregate (Class 5) as a control. The stiffness (i.e., elastic modulus) was monitored during construction and throughout the pavement life by the Minnesota Department of Transportation, along with the variation of temperatures and moisture regimes in the pavement to determine their effects on pavement performance. The resilient modulus of each material was determined by bench-scale testing in accordance with NCHRP 1-28a, as well as by field-scale tests incorporating a falling-weight deflectometer. Specimens were subjected to as many as 20 cycles of freeze-thaw in the laboratory, and the change in their resilient modulus was measured. In the field-test sections constructed with the same materials as the base course, temperature, moisture, and field modulus (from falling-weight deflectometer tests) were monitored seasonally for nearly 8 years. From the temperatures in the base course layer, the number of freeze-thaw cycles experienced in the field was determined for each test section. Inferences were made relative to modulus change versus freeze-thaw cycles. Conclusions were drawn for long-term field performances of the recycled base (RAB) in comparison to natural aggregate.
Keywords:recycled aggregate base  freeze-thaw cycles  recycled asphalt pavement  recycled concrete aggregate  resilient modulus
本文献已被 CNKI 等数据库收录!
点击此处可从《寒旱区科学》浏览原始摘要信息
点击此处可从《寒旱区科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号