首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancing Microbial Sulfate Reduction of Hydrocarbons in Groundwater Using Permeable Filled Borings
Authors:Timothy Buscheck  Douglas Mackay  Charles Paradis  Radomir Schmidt  Nicholas de Sieyes
Abstract:At a service station closed in 1993, groundwater contained benzene that persisted above the cleanup goal of 1 mg/L in zones depleted of background sulfate. The benzene and other petroleum hydrocarbons (PHCs) were present as much as 36 feet (11 m) below the water table and therefore remediation of a thick saturated zone interval was required. Microcosms using site sediments demonstrated that anaerobic benzene biodegradation occurred only if sulfate was added, suggesting sulfate addition as a remediation approach. Twenty-four boreholes (9.1″ diameter and 56′ deep) were drilled around four monitoring wells, in which benzene concentrations exceeded 1 mg/L. The boreholes were backfilled with a mixture of gravel and 15,000 pounds of gypsum (which releases sulfate as it dissolves) to create “Permeable Filled Borings” (PFBs). Concurrently, nine high pressure injections (HPIs) of gypsum slurry were conducted in other site locations (312 pounds of gypsum total). PFBs were expected to release sulfate for up to 20 years, whereas HPIs were expected to produce a short-lived plume of sulfate. Concentrations of benzene and sulfate in groundwater were monitored over a 3-year period in six monitoring wells. In two wells near PFBs, benzene concentrations dropped below the cleanup goal by two to three orders of magnitude; in one well, sulfate concentrations exceeded 500 mg/L for the most recent 18 months. Benzene concentrations in two other PFB monitoring wells declined by a factor of 2 to 4, but remained above 1 mg/L, presumably due to high-dissolved PHC concentrations and possibly greater residual PHC mass in adjacent sediments, and therefore greater sulfate demand. However, hydrogen and sulfur isotopic enrichment in benzene and sulfate, respectively, confirmed biodegradation of benzene and stimulation of sulfate-reducing conditions. Thus, it is hypothesized that the PHC mass in adjacent sediments will decline over time, as will dissolved PHC concentrations, and eventually benzene concentrations will decrease below the cleanup goal. Benzene in two HPI monitoring wells was below the cleanup goal for all but one sampling event before HPIs were conducted and remained below the cleanup goal after HPIs; there was no stimulation of sulfate-reducing conditions. It is concluded that sulfate released from PFBs contributed to declining benzene concentrations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号