首页 | 本学科首页   官方微博 | 高级检索  
     

利用SVM的GPS/INS组合导航滤波发散抑制方法研究
引用本文:李增科, 王坚, 高井祥, 谭兴龙. 利用SVM的GPS/INS组合导航滤波发散抑制方法研究[J]. 武汉大学学报 ( 信息科学版), 2013, 38(10): 1216-1220.
作者姓名:李增科  王坚  高井祥  谭兴龙
作者单位:1中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室;2中国矿业大学江苏省资源环境信息工程重点实验室
基金项目:国家自然科学基金青年基金资助项目(40904004);国家自然科学基金资助项目(41074010),江苏省高校优势学科建设工程资助项目;江苏省普通高校研究生科研创新计划资助项目(CXZZ12_0939)
摘    要:
为验证导航模型在GPS信号更新频率较低的情况下的导航能力,给出了GPS/INS组合导航滤波模型。载体运动过程中,分别使信号中断5s、10s、15s。通过实验得出,GPS信号中断时间过长(10s以上),GPS信号恢复后,Kalman滤波器会产生发散现象。引入支持向量机,提出利用SVM内插GPS信号提高信息更新频率消除组合导航滤波器的发散。结果表明,GPS信号中断时间过长导致组合导航系统滤波发散的情况下,通过SVM内插GPS数据提高GPS更新频率,可以有效地抑制滤波发散,提高导航的准确性。

关 键 词:GPS/INS组合导航  Kalman滤波  滤波发散  支持向量机
收稿时间:2013-06-12
修稿时间:2013-10-05

A Method to Prevent GPS / INS Integrated Navigation Filtering Divergence Based on SVM
LI Zengke, WANG Jian, GAO Jingxiang, TAN Xinglong. A Method to Prevent GPS / INS Integrated Navigation Filtering Divergence Based on SVM[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1216-1220.
Authors:LI Zengke  WANG Jian  GAO Jingxiang  TAN Xinglong
Affiliation:1Key Laboratory for Land Environment and Disaster Monitoring of NASMG, China Universityof Mining and Technology, South Sanhuan Road, Xuzhou 221116, China;2Jiangsu Key Laboratory of Resources and Environmental Information Engineering, China Universityof Mining and Technology, South Sanhuan Road, Xuzhou 221116, China
Abstract:
A GPS / INS integrated navigation model is introduced in order to verify the naviga-tion ability in the condition of low GPS signal update frequency. The GPS signal break period were chosen 5s, 10sand 15sduring the vehicle motion, which has demonstrated that long signal interruption interval (above 10s) will lead to the Kalman filtering divergence after GPS signal reconstruction. Considering that the integrated navigation model has favorable effect in high GPS signal update frequency, a new method is proposed to prevent the filtering divergence. The approach adopted extensively is called support vector machine (S VM) inter-polating the GPS signal based on vehicle movement discipline. These findings of the research have led the author to the conclusion that SVM is able to increase the GPS signal update fre-quency to prevent the filtering divergence caused by long GPS signal interruption interval and strengthen the navigation accuracy.
Keywords:GPS / INS integrated navigation  Kalman filter  filter divergence  support vector machine
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号