首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Melting of carbon at 50 to 300 kbar
Authors:Maura S Weathers  William A Bassett
Institution:1. Department of Geological Sciences, Cornell University, 14853, Ithaca, NY, USA
Abstract:Diamond (~1 μm) and graphite (1–10 μm) in NaCl were melted at 50 to 300 kbar in a diamond anvil cell using a pulsed YAG laser. The samples were removed from the cell and the structures of the quenched phases were studied by transmission electron microscopy. The melted regions of the samples were found to consist of nearly perfect spheres of carbon ranging in size from ~1 μm down to less than a few nanometers. In the diamond sample melted at 300 kbar, the larger spherules (>0.2 μm) are polycrystalline diamond with either a granular or radial texture. The smaller spherules (<0.2 μm) give electron diffraction patterns with four diffuse rings that correspond to the 002, 100, 004 and 110 of graphite. This diffraction pattern is typical of disordered graphite randomly oriented about the c-axis. Dark field imaging, using a portion of the 002 ring, produces a “bow tie” figure in each of the smaller spherules. The orientation of the “bow tie” figure depends on the portion of the ring used to form the image, and indicates a radial orientation of the c-axis of the disordered graphite. The spacing between the 002 layers depends on the pressure at the time of melting. We interpret this to indicate that there is some sp3 bonding between layers in the disordered graphite in the smaller spherules. The smaller spherules may have the disordered graphite structure because of the effect of the size on the free energy relationship between the phases, or they may have been quenched more rapidly than the larger spherules thus preserving some of the character of the melt. If the latter explanation is correct, then our results may indicate that the diamond melt contains significant sp2 bonding. Lattice images (Fig. 12) of the internal structure of the smallest spherules observable (~50 A) clearly show that the carbon layers are parallel to the surface of the spherules and that there is a great deal of disorder in the layers. These observations are entirely consistent with our conclusions based on the dark field images.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号