Abstract: | The generation of bulk petroleum, liquid and gaseous hydrocarbons from the Duvernay Formation was simulated by heating immature kerogens in a closed system (MSSV pyrolysis) at four different heating rates (0.013, 0.1, 0.7 and 5.0 K/min). Using the established parallel reaction kinetic model, temperature and compositional predictions were tested to be suitable for geological conditions by comparing the laboratory results with natural changes in source bitumens and reservoir oil maturity sequences from the Duvernay Formation. In the case of bulk liquid and gaseous hydrocarbons, the above kinetic calculations can be considered valid because their maximum yields are independent of laboratory heating rates. In contrast, the contents of paraffins, aromatics and sulfur compounds show a pronounced heating rate dependence. Extrapolated to geological heating rates, the compositional predictions are consistent with the bulk composition of natural products in the Duvernay-petroleum system showing an increase of paraffinicity and hydrogen content. In contrast to that, the “hump” decreases with decreasing heating rate, a trend which is confirmed by the low amounts of unresolved compounds in natural high maturity products. Because of these heating-rate dependent compositional changes, geological predictions of natural molecular composition by the commonly used kinetic models are not suitable. |