首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度最小二乘支持向量机优化的克里金插值方法
引用本文:车磊,王海起,费涛,闫滨,刘玉,桂丽,陈冉,翟文龙. 基于多尺度最小二乘支持向量机优化的克里金插值方法[J]. 地球信息科学学报, 2017, 19(8): 1001-1010. DOI: 10.3724/SP.J.1047.2017.01001
作者姓名:车磊  王海起  费涛  闫滨  刘玉  桂丽  陈冉  翟文龙
作者单位:1. 中国石油大学(华东)地球科学与技术学院,青岛 2665802. 中国电波传播研究所青岛分所,青岛 266107
基金项目:国家自然科学基金项目(41471322);山东省自然科学基金项目(ZR2012DM010)
摘    要:
克里金插值方法根据待估位置点、已知样本数据点的位置关系和区域化变量的空间相关性,实现空间加权估计,满足估计的无偏性和最优性。传统方法理论模型形状固定且选择具有人为主观性,无法反映空间数据的变化趋势及其空间多尺度特征。本文为解决上述问题,提出了一种基于多尺度最小二乘支持向量机优化的克里金插值方法,此方法为拟合实验变异函数提供了一种新的思路。从实际样本数据的变化趋势出发,采用最小二乘支持向量机拟合实验变异函数,并利用不同尺度小波核反映不同尺度下的空间变化。最后,实验环节包括模拟和应用,模拟主要验证经多尺度最小二乘支持向量机优化后插值方法的科学有效性以及准确性,应用主要研究青岛市PM2.5浓度时空分布特征,为城市生态科学防护及控制提供理论依据。结果表明,基于多尺度最小二乘支持向量机优化的克里金插值方法能够更好地刻画变异函数,反映不同尺度下的空间变化细节,从而在一定程度上提高插值的精度,是一种可选的克里金插值方法。

关 键 词:克里金插值  最小二乘支持向量机  变异函数  多尺度  小波核函数  
收稿时间:2016-10-31

Kriging Interpolation Method Optimized by Multi-scale Least Squares Support Vector Machine
CHE Lei,WANG Haiqi,FEI Tao,YAN Bin,LIU Yu,GUI Li,CHEN Ran,ZHAI Wenlong. Kriging Interpolation Method Optimized by Multi-scale Least Squares Support Vector Machine[J]. Geo-information Science, 2017, 19(8): 1001-1010. DOI: 10.3724/SP.J.1047.2017.01001
Authors:CHE Lei  WANG Haiqi  FEI Tao  YAN Bin  LIU Yu  GUI Li  CHEN Ran  ZHAI Wenlong
Affiliation:1. School Of Geosciences, China University of Petroleum (East China), Qingdao 266580, China2. China Research Institute of Radiowave Propagation Qingdao Branch, Qingdao 266107, China;
Abstract:
Kriging interpolation method realizes spatial weighted estimation that meets the unbiasedness and optimality according to the position relationship between the estimated location sites and the known sample sites and regionalized variable spatial correlation. Traditional theoretical model shape is fixed and chosen with subjectivity, which can't reflect the changing trend and multi-scale spatial characteristics. The choice of scale and the treatment of scale effects also need to be considered. To solve the problems above, we propose a method of kriging interpolation optimized by multi-scale least squares support vector machine (LS-SVM), which provides a new idea for fitting experimental variogram. Starting from the changing trend of the actual sample data, least squares support vector machine fits experimental variogram and the results conform to the spatial changing trend of data itself. Secondly, the wavelet kernel as the LS-SVM kernel function, parameters can be adjusted according to different parts of the nuclear, which is flexible and variable. Finally, the multi-scale wavelet kernel using wavelet multi-resolution characteristics, can reflect the different details of spatial changes, to avoid the single scale LS-SVM ignoring the spatial details of the problem. Followed that, the experiment includes simulation and application. Experimental simulation mainly verifies scientific validity and accuracy by the optimized interpolation of multi-scale least squares support vector machine. Meanwhile, experimental application research of PM2.5 concentrations of temporal and spatial distribution provides the theoretical basis for city ecological protection and controlling. Final results show that kriging interpolation algorithm optimized by multi-scale least squares support vector machine is superior to the traditional method and single scale optimized kriging interpolation algorithm. It would be better to depict the variation function and reflect the different scales of spatial changes in details to further improve the accuracy of the interpolation to some extent, which is an optional kriging interpolation method.
Keywords:kriging interpolation  least squares support vector machine  variogram  multi-scale  wavelet kernel function  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号