首页 | 本学科首页   官方微博 | 高级检索  
     

科学合作地域倾向性研究——以中国雾霾研究为例
引用本文:王双,陈毓芬,袁烨城,李伟,王成舜. 科学合作地域倾向性研究——以中国雾霾研究为例[J]. 地球信息科学学报, 2017, 19(2): 248-255. DOI: 10.3724/SP.J.1047.2017.00248
作者姓名:王双  陈毓芬  袁烨城  李伟  王成舜
作者单位:1. 信息工程大学地理空间信息学院,郑州 4500522. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 1001013. 75711部队,广州 510515
基金项目:国家自然科学基金项目(41171353);资源与环境信息系统国家重点实验室青年人才培养基金项目(08R8B6IOYA);国家“863”计划项目(2012AA12A404)
摘    要:
科学合作是促进知识传播和共享的重要途径,已有研究表明,地理因素是影响科学合作的主要因素之一。然而,目前针对该问题的研究大多只是从科学计量学的角度,对科学合作强度与地理距离的函数关系进行描述,无法揭示科学合作在空间上的分布特征和内部差异性。因此,本文从地理学的角度,以中国雾霾研究的合作网络为例,通过对文献题录中的位置信息进行解析,将虚拟的科学合作网络映射到地理合作网络。在此基础上,提出了一种考虑地理距离的科学合作网络社区发现方法,挖掘科学合作网络中蕴含的空间聚类特征,从而对科学合作的地域倾向性进行反映。通过比较发现,基于合作频次与地理距离的社区发现算法,能够使社区内部的平均地理距离最小而合作强度最大,既反映了科学合作在地理上的近似性,又体现了科学合作强度特征。该方法能够直观地揭示科学合作中隐含的空间分布模式和联系,对其他复杂网络的地理社区划分也有一定的借鉴意义。

关 键 词:科学合作  地理可视化  复杂网络  社区发现  Salton指数  
收稿时间:2016-06-01

Research on Geographical Preference of Scientific Collaboration : A Case Study of Haze Research Network in China
WANG Shuang,CHEN Yufen,YUAN Yecheng,LI Wei,WANG Chengshun. Research on Geographical Preference of Scientific Collaboration : A Case Study of Haze Research Network in China[J]. Geo-information Science, 2017, 19(2): 248-255. DOI: 10.3724/SP.J.1047.2017.00248
Authors:WANG Shuang  CHEN Yufen  YUAN Yecheng  LI Wei  WANG Chengshun
Affiliation:1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450052, China2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China3. 75711 Troops, Guangzhou 510515, China
Abstract:
Scientific collaboration is an important way of knowledge dissemination and sharing. Researches have showed that geographic factor is one of the main factors that influencing scientific collaboration. However, most of related researches have just quantitatively described the functional relationship between collaboration strength and geographic distance from the perspective of Scientometrics. As a result, it can hardly detect the spatial characteristics and relationship of scientific collaboration. In this paper, for the purpose of mining spatial patterns in scientific collaboration network, geographical preference of scientific collaboration was studied from the view of geography. Taking the haze research network in China for example, the location information was extracted from bibliographic data and then the virtual scientific collaboration network can be mapped into geo-collaboration network by using geocoding service. Based on this, a distance-based method for community detection of scientific collaboration network was proposed to explore the spatial cluster pattern in scientific collaboration. Using modified Louvain community detection algorithm, two different variables were used as weight factor to detect communities. The results showed that, the community detection algorithm considering collaboration frequency and geographic distance can make the average geographic distance minimum and the Salton index maximum inside community, which both reflect the geographical preference and collaboration strength of scientific collaboration. This method can effectively explore the spatial pattern and relationship in scientific collaboration network, and represent geographical preference of scientific collaboration in a quantitative and qualitative way. In addition, it is a novel method of introducing geographic location and geographic distance into complex network analysis. We hope that it will not only be helpful for scientific collaboration network, but also can be applied to other complex network for geographic community detection.
Keywords:scientific collaboration  geo-visualization  complex network  community detection  Salton index  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号