首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rate measurements and detection of gas microseepage to the atmosphere from an enhanced oil recovery/sequestration project,Rangely, Colorado,USA
Institution:1. Faculty of Engineering, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran;2. Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran;3. Ceramic Division, Materials and Energy Research Center, Tehran, Iran
Abstract:One of the proposals for large-scale sequestration of fossil fuel-derived CO2 is deep geologic disposal in depleted oil/gas reservoirs or deep aquifers. Previously published scenarios for this inadequately proven technology have either ignored or dismissed the possibility of vertical migration of gases caused by overpressure. Overpressuring of a reservoir or aquifer will be necessary in order to have acceptable rates for dispersal of injected CO2. This research describes methodology and the results of measurement of microseepage of CO2 and CH4 at a large-scale CO2-enhanced oil recovery (EOR) operation at Rangely, Colorado, USA. Shallow and deep soil gas concentrations, and direct transport of CO2 and CH4 into the atmosphere were measured. The interpretation of the measurements was complemented by both stable and radiogenic isotopic measurements of C. The results have demonstrated an estimated microseepage to the atmosphere of approximately 400 metric tonnes of CH4/a from the 78 km2 area of the Rangely field. Preliminary estimates of deep-sourced CO2 losses are <3800 tonnes/a, based on stable isotope measurements of soil gases. Several holes up to 10 m deep were drilled on, and off the field for nested gas sampling of composition and stable C isotopic ratios for CO2 and CH4. Carbon-14 measurements on CO2 from these holes indicate that deep-sourced CO2 microseepage losses were approximately 170 tonnes/a.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号