首页 | 本学科首页   官方微博 | 高级检索  
     


Crustal assimilation in basalt and jotunite: Constraints from layered intrusions
Authors:Christian Tegner   J. Richard Wilson  Brian Robins  
Affiliation:aDepartment of Earth Sciences, University of Aarhus, C. F. Møllers Allé 110, DK-8000 Aarhus, Denmark;bDepartment of Earth Science, University of Bergen, Allégt. 41 N-5007 Bergen, Norway
Abstract:
To constrain the amount and rate of crustal contamination that is possible in basaltic and jotunitic magma, and to gain an insight into the physical and thermal processes of assimilation in crustal magma chambers, we have modelled published Sr and Nd isotopic data from three layered intrusions. Well-exposed sequences of cumulates with no evidence of magma recharge provide direct records of concurrent assimilation and fractional crystallization (AFC). The key to the modelling is that F, the mass fraction of magma remaining in the chamber, can be estimated from the thicknesses of the studied cumulate sequences. This allows AFC model curves to be fitted to the isotopic data by varying r, the ratio of the rate of mass assimilated to the rate of mass crystallized. The results of modelling show that r is nearly constant in 800 to 2000 m thick sequences of cumulates displaying up-section decreases in anorthite content of plagioclase, increases in whole-rock Sr0 (initial 87Sr/86Sr) and decreases in whole-rock εNd0 (initial εNd). The r-values of the layered sequences range from 0.12 in the Fongen–Hyllingen Intrusion, over 0.20 in the Bjerkreim–Sokndal Intrusion, to 0.27 in the Hasvik Intrusion. The total amount of assimilation, the bulk crust/magma ratio, reaches values of 0.08, 0.19 and 0.28 at the level of the most contaminated samples after 60% to 80% crystallisation, whereas the instantaneous crust/magma ratio of the most contaminated magmas were respectively 0.14, 0.46, and 0.70, for the three intrusions.Innumerable country rock xenoliths occur in the three layered intrusions and played a crucial role in the assimilation process. The xenoliths spalled off the roofs of the magma chambers during magma emplacement and their initial temperature and composition relate to r in the intrusions. In the Hasvik Intrusion (r = 0.27), the initial temperature of the country rocks was 450 °C and the xenoliths were fusible metasediments and therefore produced a high fraction of partial melt that could be assimilated. In the Bjerkreim–Sokndal Intrusion (r = 0.20), the country rocks were initially at temperatures of 640–880 °C but included both refractory massif-type anorthosite and fusible gneisses. In the Fongen–Hyllingen Intrusion (r = 0.12), the country rocks were cooler (300 °C) and the xenoliths include refractory metabasalt (dominant) and fusible metapelite. We argue that the refractory metabasalt and anorthosite xenoliths acted mainly as heat sinks, resulting in reduced r-values in Fongen–Hyllingen and Bjerkreim–Sokndal Intrusions.Heating of refractory and fusible xenoliths, and melting of fusible xenoliths absorbed sensible and latent heat of the magma. Energy-balanced modelling shows that up to 75% of the heat available was absorbed by xenoliths within the magma chambers, promoting higher rates of cooling and crystallisation than would have resulted from loss of heat to the envelope of country rocks alone. The high r-values reflect the amount of heat absorbed by heating and melting country rock within the magma chambers themselves, and their constancy reflects the ready availability of fusible xenoliths.
Keywords:Layered mafic intrusion   Crustal assimilation   Xenoliths   Hasvik   Fongen–  Hyllingen   Bjerkreim–  Sokndal, Norway
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号