首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the geoid–quasigeoid separation in mountain areas
Authors:Jakob Flury  Reiner Rummel
Institution:1.Center for Space Research,University of Texas,Austin,USA;2.Institute for Astronomical and Physical Geodesy,Technische Universit?t München,Munich,Germany
Abstract:The separation between the reference surfaces for orthometric heights and normal heights—the geoid and the quasigeoid—is typically in the order of a few decimeters but can reach nearly 3 m in extreme cases. The knowledge of the geoid–quasigeoid separation with centimeter accuracy or better, is essential for the realization of national and international height reference frames, and for precision height determination in geodetic engineering. The largest contribution to the geoid–quasigeoid separation is due to the distribution of topographic masses. We develop a compact formulation for the rigorous treatment of topographic masses and apply it to determine the geoid–quasigeoid separation for two test areas in the Alps with very rough topography, using a very fine grid resolution of 100 m. The magnitude of the geoid–quasigeoid separation and its accuracy, its slopes, roughness, and correlation with height are analyzed. Results show that rigorous treatment of topographic masses leads to a rather small geoid–quasigeoid separation—only 30 cm at the highest summit—while results based on approximations are often larger by several decimeters. The accuracy of the topographic contribution to the geoid–quasigeoid separation is estimated to be 2–3 cm for areas with extreme topography. Analysis of roughness of the geoid–quasigeoid separation shows that a resolution of the modeling grid of 200 m or less is required to achieve these accuracies. Gravity and the vertical gravity gradient inside of topographic masses and the mean gravity along the plumbline are modeled which are important intermediate quantities for the determination of the geoid–quasigeoid separation. We conclude that a consistent determination of the geoid and quasigeoid height reference surfaces within an accuracy of few centimeters is feasible even for areas with extreme topography, and that the concepts of orthometric height and normal height can be consistently realized and used within this level of accuracy.
Keywords:Geoid  Quasigeoid  Orthometric height  Normal height  Topographic masses  Mean gravity along plumbline
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号