首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The mineral chemistry of hydrothermally altered and metamorphosed wall-rocks at the Stollberg Fe-Pb-Zn-Mn(-Ag) deposit,Bergslagen, Sweden
Authors:M Ripa
Institution:(1) Geological Survey of Sweden, Box 670, S-751 28 Uppsala, Sweden
Abstract:The c. 1.9 Ga old Stollberg sulphide and Mnrich skarn iron ores and sulphide ores in Bergslagen, south-central Sweden are hosted by hydrothermally altered and metamorphosed felsic volcanic and volcaniclastic rocks. The ores are underlain by comformable alteration zones characterized by albite-gedrite-quartz and biotite-muscovite-plagioclase-K-feldspar-quartz +/– garnet assemblages. The present mineralogies are interpreted as medium-grade metamorphic equivalents to the original alteration mineral assemblages. PT-conditions during prograde regional metamorphism are semiquantatively determined to be 510 to 560 °C at approximately 3 kbar. With increasing modal content of gedrite and biotite in the alteration zones, the Mg/Fe ratios and XMg's in octahedral positions of these minerals also increase. In the gedrite-bearing strata, whole-rock Mg/Fe ratios remain constant, whereas in the biotite-rich unit the wholerock Mg/Fe trend is parallel to that of the biotites.The trends in the metamorphic mineral composition are interpreted to be a product of original changes in fluid composition during the evolution of a sub-seafloor hydrothermal system. During the initial stage of alteration, Fe-Mn-rich fluids altered the rocks, and during a later stage, the fluids became more Mg-rich, possibly due to entrainment of fresh seawater, and the alteration zones became relatively more Mg-rich. Sulphide precipitation was contemperaneous with Mg metasomatism, suggesting base metal precipitation was a function of the mixing of cool seawater with hydrothermal fluid. It is proposed that early hydrothermal alteration was associated with the deposition of areally extensive Fe-oxide formation, and that Mg metasomatism defines a second stage of hydrothermal activity during which sulphide mineralization overprinted the earlier formed Fe-oxide deposit.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号