首页 | 本学科首页   官方微博 | 高级检索  
     


Conditional random field reliability analysis of a cohesion-frictional slope
Affiliation:1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering (Ministry of Education), Wuhan University, 8 Donghu South Road, Wuhan 430072, PR China;2. School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, PR China;3. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering (Ministry of Education), Wuhan University, 8 Donghu South Road, Wuhan 430072, PR China;2. Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A, #07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
Abstract:Discarding known data from cored samples in the reliability analysis of a slope in spatially variable soils is a waste of site investigation effort. The traditional unconditional random field simulation, which neglects these known data, may overestimate the simulation variance of the underlying random fields of the soil properties. This paper attempts to evaluate the reliability of a slope in spatially variable soils while considering the known data at particular locations. Conditional random fields are simulated based on the Kriging method and the Cholesky decomposition technique to match the known data at measured locations. Subset simulation (SS) is then performed to calculate the probability of slope failure. A hypothetical homogeneous cohesion-frictional slope is taken as an example to investigate its reliability conditioned on several virtual samples. Various parametric studies are performed to explore the effect of different layouts of the virtual samples on the factor of safety (FS), the spatial variation of the critical slip surface and the probability of slope failure. The results suggest that whether the conditional random fields can be accurately simulated depends highly on the ratio of the sample distance and the autocorrelation distance. Better simulation results are obtained with smaller ratios. Additionally, compared with unconditional random field simulations, conditional random field simulations can significantly reduce the simulation variance, which leads to a narrower variation range of the FS and its location and a much lower probability of failure. The results also highlight the great significance of the conditional random field simulation at relatively large autocorrelation distances.
Keywords:Reliability analysis  Probability of failure  Spatial variability  Conditional random field  Subset simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号